NuSMV Doxygen documentation
Documentation

Release 0.0
Alessandro Mariotti

October 06, 2014

Contents
1 Documenting a NuSMYV header file i
2 Documenting a NuSMYV source file iv
3 Documenting a NuSMYV package v
3.1 TOBEDISCUSSED e e vi
4 Documenting a NuSMYV shell command vi
5 Documenting a NuSMYV environment variable viii
Contents:

1 Documenting a NuSMV header file

Here is a significative example of how any NuSMV header file should look like, whether it declares a pseudo-class or
it contains normal code:

This file is part of NuSMV version 2. Copyright (C) 2014 by
FBK-irst.

NuSMV version 2 1s free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

NuSMV version 2 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.

For more information on NuSMV see <http://nusmv.fbk.eu>
or email to <nusmv-users@fbk.eu>.
Please report bugs to <nusmv-users@fbk.eu>.

To contact the NuSMV development board, email to <nusmv@fbk.eu>.

/#!
\author Alessandro Mariotti
\brief Provides functionalities for foo

This is the full description. It can go multiline. It supports
<i>HTML</i> and ‘Markdown‘ (From doxygen >= 1.8). I would
suggest using the ‘Markdown' format, since more readable and
easier to learn.

Provides functionalities for foo, which are here described in a
detailed way.

If Foo is a NuSMV pseudo-class, describe the class
functionalities here.

\todo: Support for foo2 is missing
*/

#ifndef _ _FOO_H
#define __FOO_H__

/#!
\struct Foo
\brief The Foo structure does foo

Foo struct long description. Specifically for structs (this is the
only case), the use of the \struct command is suggested for better
documentation generation.

*/

typedef struct Foo_TAG* Foo_ptr;

/*!

\brief Checks the given Foo instance

Checks the given Foo instance. Check only checks whether the given
value is NULL or not.

*/

#define FOO_CHECK_INSTANCE (x) \
(nusmv_assert (FOO (x) != FOO (NULL)))

/!

\brief A very nice enumeration

Long description here
*/
typedef enum FooEnum_TAG {
VALl = 1, /#!< Docs for VALl =/
VAL2 = 2, /#!< Docs for VALZ #*/
VAL3 = 3 /%!< Docs for VAL3 %/
} FooEnumType;

/!
\brief A function that does something with the enviroment and returns
a Foo instance

A longer description about the function that does something with the
enviroment and returns a Foo instance.

Call this function is this way (this will be shown as code
snippet, since separated from the text with an empty line and
indented by 4 spaces):

Foo_ptr foo = Foo_do_something(env, 2, strings);

Parameter strings 1s freed by the Foo_do_something function, therefore we
add the takes_mem command

The return value memory is handled internally, so it must not be
freed by the caller. In this case, we add the keeps_mem
command.

\todo Missing description about Foo Fighters.

\param env The environment

\param param An integer parameter

\param strings The input list of strings \takes_mem
\return A Foo instance. \keeps_mem

\todo Improve this documentation

\sa Foo_do_something 2 (this is for See-Also)

\se The given NuSMVEnv_ptr instance 1is changed (this is for Side-Effect)
*/
Foox Foo_do_something (NuSMVEnv_ptr env, int param, charx* strings);

#endif /+ _ _FOO_H _ */

Here is a significative example of how to rightly describe a method, it’s mandatory to use the directive \methodof in
order to correctly associate “methods” to the corresponding classes in doxygen documentation.

/#l
\methodof ClassName
\brief Short description

Longer description...
*/
<type> ClassName_method_name (ClassNamex self, ...);

2 Documenting a NuUSMV source file

The documentation rules for header files apply also for the source files. Altough source file members documentation
is optional, the copyright header and the first doxygen entry, where author and description of the file are described, are
mandatory.

Currently, doxygen documentation within a source file is not exported in the generated documentation. For exporting
such documentation, please put it in a *.doxy file, which will be automatically read by doxygen.

Here is a significative example of how a NuSMYV source file should look like:

This file is part of NuSMV version 2. Copyright (C) 2014 by
FBK-irst.

NuSMV version 2 1s free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

NuSMV version 2 1is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY,; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public

License along with this library; 1if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
For more information on NuSMV see <http://nusmv.fbk.eu>

or email to <nusmv-users@fbk.eu>.

Please report bugs to <nusmv-users@fbk.eu>.

To contact the NuSMV development board, email to <nusmv(@fbk.eu>.

/x!
\author Alessandro Mariotti
\brief Implementation of Foo

A long description about the Foo implementation

*/

#include "nusmv/core/Foo.h"

typedef struct Foo_TAG
{
INHERITS_FROM (EnvObiject) ;
NodeMgr_ptr nodes; /x!< Used for something about Foo */

} Foo;

static int
foo_do_something_new (const Foo_ptr foo);

ke */
/+ Definition of exported functions */
Y e et et */

Foox Foo_do_something (NuSMVEnv_ptr env, int param, charxx strings)

{
/+ Do a lot of stuff =*/

ke */
/% Definition of static functions */
R e ettt */
/x!

\brief Does something new with Foo

\param foo the Foo instance

\return an integer that has something to do with the given foo instance
*/
static int foo_do_something_new (const Foo_ptr foo)

{
/+ Do a lot of stuff =*/

3 Documenting a NuSMV package

With the introdution of the doxygen documentation generation, it is now possible to write proper top-level documen-
tation for NuSMV and NuSMV addons packages.

Packages documentation can be placed in any directory that is under the doxygen documentation path (see the doxygen
configuration file for details), but must have the .doxy extension.

One single .doxy documentation file can contain documentation of one or more packages and sub-packages, but it is
mandatory to specify the belonging package directory with the \dir <path> command.

An example for the node package and one of it’s sub-packages would look like
File NuSMV2 /NuSMV/doc/doxygen/packages/node/node.doxy:
/%!

\dir nusmv/core/node
\brief This is the node package

This package contains a lot of nodes..

*/

/!

\dir nusmv/core/node/printers

This sub-package contains a lot of node printers..

*/
However, these can be split-up onto two files:

File NuSMV2 /NuSMV/doc/doxygen/packages/node/node.doxy:

/%!
\dir nusmv/core/node
\brief This is the node package

This package contains a lot of nodes..

*/

File NuSMV2 /NuSMV/doc/doxygen/packages/node/printers/printers.doxy:

/!

\dir nusmv/core/node/printers

This sub-package contains a lot of node printers..

*/

3.1 TO BE DISCUSSED

Package documentation files can be placed everywhere in the source tree. However, I would suggest using one of the
two following rules:

1. Place them within an ad-hoc directory, as listed below:

Code Docs directory
NuSMV | NuSMV2/NuSMV/doc/doxygen/packages
addons NuSMV2/addons/doc/doxygen/packages

2. Place them directly in the package directory:

Pkg | Docs directory
node | NuSMV2/NuSMV/nusmv/core/node
simp | NuSMV2/addons/src/addons/simp

4 Documenting a NuSMV shell command

Here is a significative example of how a NuSMV shell commands documentation should look like.

Part of file NuSMV2/NuSMV/shell/bmc/bmcCmd. h:

/*!
\command{bmc_inc_simulate} Incrementally generates a trace of the model
performing a given number of steps.

\command_args{\[-h\] \[-p | -v\] \[-r\]
[\[-c "constraints"\] | \[-t "constraints"\]] \[-k steps\]}

bmc_inc_simulate performs incremental simulation
of the model. If no length is specified with <i>-k</i> command
parameter, then the number of steps of simulation to perform is

taken from the value stored in the environment variable
<i>bmc_length</i>.

\command_opts{

\opt{p, Prints current generated trace (only those variables
whose value changed from the previous state)}

\opt{v, Verbosely prints current generated trace (changed and
unchanged state variables)}

\opt{r, Picks a state from a set of possible future states in
a random way.}

\opt{i, Enters simulation’s interactive mode. }

\opt{a, Displays all the state variables (changed and
unchanged) 1in the interactive session}

\opt{c "constraints", Performs a simulation in which
computation is restricted to states satisfying those
<tt>constraints</tt>. The desired sequence of states
could not exist if such constraints were too strong or it
may happen that at some point of the simulation a future
state satisfying those constraints doesn’t exist: in that
case a trace with a number of states less than
<tt>steps</tt> trace is obtained. The expression cannot
contain next operators\, and is automatically shifted by
one state in order to constraint only the next steps}

\opt{t "constraints", Performs a simulation in which
computation 1is restricted to states satisfying those
<tt>constraints</tt>. The desired sequence of states
could not exist if such constraints were too strong or it
may happen that at some point of the simulation a future
state satisfying those constraints doesn’t exist: in that
case a trace with a number of states less than
<tt>steps</tt> trace is obtained. The expression can
contain next operators\, and is NOT automatically shifted
by one state as done with option -c}

\opt {k steps, Maximum length of the path according to the
constraints. The length of a trace could contain less
than <tt>steps</tt> states: this 1is the case in which
simulation stops in an intermediate step because it may
not exist any future state satisfying those constraints.
</dl>}

\se None
*/
int Bmc_CommandBmcSimulate (NuSMVEnv_ptr env, int argc, charx* argv);

Using the proper documentation tags for documenting commands results in a better organized an better looking doc-
umentation: Each command properly documented ends up in the Commands related page, and is therefore more
readable and easier to find

Generated documentation of the example above

int Bmc_Cy i [_ptr env,
int arge,
char ** argv

)

Command:
bme_inc_simulate: Incrementally generates a trace of the model performing a given number of steps.

Command arguments: [-] [-p | -v] [-r] [[-c "constraints] | [t "constraints"]] [-k steps]
bmc_inc_simulate performs incremental simulation of the model. If no length is specified with -k command parameter, then the number of steps of simulation to perform is taken from the value stored in the environment variable bmc_fength.

Command Options:

Prints current generated trace (only those variables whose value changed from the previous state).
Verbosely prints current generated trace (changed and unchanged state variables).

Picks a state from a set of possible future states in a random way.

Enters simulation’s interactive mode.

Displays all the state variables (changed and unchanged) in the interactive session

-c “constraints"
performs a simulation in which computation is restricted to states satisfying those constraints. The desired sequence of states could not exist if such constraints were too strong or it may happen that at some point of the simulation a future state satisfying

those constraints doesn't exist: in that case a trace with a number of states less than steps trace is obtained. The expression cannot contain next operators, and is automatically shifted by one state in order to constraint only the next steps

-t “constraints"
performs a simulation in which computation is restricted to states satisfying those constraints. The desired sequence of states could not exist if such constraints were too strong or it may happen that at some point of the simulation a future state satisfying

those constraints doesn't exist: in that case a trace with a number of states less than steps trace is obtained. The expression can contain next operators, and is NOT automatically shifted by one state as done with option -c

*

steps
Maximum length of the path according to the constraints. The length of a trace could contain less than steps states: this is the case in which simulation stops in an intermediate step because it may not exist any future state satisfying those constraints.

Side Effects:
None

The Commands page
NuSMV Developers Manual
Data Structures ‘ Files |

Commands

Global Bmc_CommandBmcPickState (NuSMVEnv_ptr env, int argc, char **argv)

simulate_bmc: Picks a state from the set of initial states

Global Bmc_CommandBmcSimulateCheckFeasibleConstraints (NuSMVEnv_ptr env, int arge, char **argv)

bmec_pick_state: Checks feasibility of a list of constraints for the simulation

k.4

5 Documenting a NuSMV environment variable

Here is a significative example of how a NuSMV environment variables documentation should look like. Place the
environment documentation above the definition of the name of the variable:

Part of file NuSMV2 /NuSMV/core/opt/opt . h:

/!

\env_var{input_order._file} The input order file

Longer description

*/
#define INPUT_ORDER FILE "input_order_file"

Using the proper documentation tags for documenting environment variables results in a better organized an better
looking documentation: Each environment variable properly documented ends up in the Environment variables
related page, and is therefore more readable and easier to find (See screenshot)

NuSMV Developers Manual
Data Structures | Files ‘ Q- Search

Environment variables

Global INPUT_ORDER _FILE

input_order_file: The input order file

Global OUTPUT_FLATTEN_MODEL _FILE

output_flatten_model_file: The output flatten model file.

Global OUTPUT_ORDER_FILE

output_order_file: The output order file

Global TRANS_ORDER_FILE

trans_order _file: The trans order file

Generated on Wed Jul 16 2014 15:30:42 for NUSMV Developers Manual by @@m@m 1.8.7

	Documenting a NuSMV header file
	Documenting a NuSMV source file
	Documenting a NuSMV package
	TO BE DISCUSSED

	Documenting a NuSMV shell command
	Documenting a NuSMV environment variable

