ne

A nice editor
Version 2.4

by Sebastiano Vigna and Todd M. Lewis

Copyright(© 1993-1998 Sebastiano Vigna
Copyright(©) 1999-2012 Todd M. Lewis and Sebastiano Vigna

Permission is granted to make and distribute verbatim sagithis manual provided the copyright notice
and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified vassmf this manual under the conditions for

verbatim copying, provided that the entire resulting dedtiwork is distributed under the terms of a

permission notice identical to this one.

Permission is granted to copy and distribute translatidrisi® manual into another language, under the
above conditions for modified versions, except that thisrigsion notice may be stated in a translation
approved by the Free Software Foundation.

Chapter 1: Introduction 1

1 Introduction

ne is a full screen text editor fooN* X (or, more precisely, forosix: see Chapter 7 [Motivations and
Design], page 61). | came to the decision to write such amwediter getting completely sick of , both
from a feature and user interface point of view. | needed d@orthat | could use through @Inet
connection or a phone line and that wouldn't fire off a fulblwh LITHP! operating system just to do
some editing.

A concise overview of the main features follows:

e three user interfaces: control keystrokes, command lind, raenus; keystrokes and menus are
completely configurable;

e syntax highlighting;
o full support for UTF-8 files, including multiple-column clacters;

e the number of documents and clips, the dimensions of thdagispnd the file/line lengths are
limited only by the integer size of the machine;

e simple scripting language where scripts can be genexadezh idiotproof record/play method;
¢ unlimited undo/redo capability (can be disabled with a cand);

e automatic preferences system based on the extension oletimaifhe being edited;

e automatic completion of prefixes using words in your docurmas dictionary;

o afile requester with completion features for easy file rediie

e extended regular expression search and refdaemacs andvi ;

e avery compact memory model—you can easily load and modify hage files;

e editing of binary files.

1 This otherwise unremarkable language is distinguished by thenaie of ans’ in its character set; users must substitute
‘th . LITHP is said to be useful in protheththing lithtth.

ne’s manual

Chapter 2: Basics 3

2 Basics

Simple things should be simple. Complex things should béglesglan Kay)

ne’s user interface is essentially a compromise between thigsliof character driven terminals and
the power of GUIs. Whilegeal editing is done without ever touching a mouse, it is also thag editing
should be doable without ever touching a manual. These twéliciing goals can be accommodated
easily in a single program if we can offer a series of intexfathat allow for differentiated use.

In other words, it is unlikely that ane wizard will ever have to activate a menu, but to become an
expert user you just have to use the menus enough to learnadoythe most important keystrokes. A
good manual is always invaluable when one comes to configarahd esoteric features, but few users
will ever need to changee’s menus or key bindings.

Another important thing is that powerful features shoultiais be accessible, at least in part, to every
user. The average user should be able to record his actepiayrthem, and save them in a humanly
readable format for further use and editing.

In the following sections we shall take a quick toumefs features.

2.1 Terminology

In this section we explain and contrast some of the terengses. Understanding these distinctions will
go a long way towards making the rest of this manual make sense

A file is a group of bytes stored on disk. This may seem rather obylut the important distinction
here is thate does not edit files; it editdocuments

A documents whatne calls one of the “text thingies” that you can edit. It is a sege of lines of
text in the computer's memory—not on disk. Documents canrbated, edited, saved in files, loaded
from files, discardedgt cetera When a document is loaded from or saved to a file, it remaissciated
with that file by name until the document is either closed oeddo a different file. Interactions between
documents and files are handled by the commands undeFithe’*menu. The Documents ' menu
commands only deal with documents. See Section 3.7 [Menagg 6.

Internally, ne holds its documents ibuffers A buffer is a chunk of memory in whicle holds
something. For example, each document is held in its owreludf are any loaded or recorded macros,
undo records, a copy of your last deleted line of text, a cd@tlgyour previous responses to long input,
and several other things.

2.2 Starting

To startne, just type he’ and press RETURN. If you want to edit some specific file(s), yau put their
name(s) on the command line just after the command namer asywN* X command. The screen of
your terminal will be cleared (or filled with text loaded fraire first file you specified). See Section 3.1
[Arguments], page 11 for other command line options.

Writing text is pretty straightforward: if your terminal soperly configured, every key will (should)
do what you expect. Alphabetic characters insert text,azlksys move the cursor, and so on. You can
use the DELETE and BACKSPACE key to perform corrections. Ifnkeyboard has an INSERT key,
you can use it tdoggle (switch from on to off, or vice versa) insert mode. In gengfaltries to squeeze
everything it can from your keyboard. Function keys and spe@sovement keys should work flawlessly
if your terminal is properly configured. If not, complain toyr system administrator. If that doesn’'t
help, see Section 5.1 [Key Bindings], page 55.

At the bottom of the screen, you will see a line containing esrambers and letters. This is called
the status babecause it reports to you part of the internal state of thioedit startup, the status bar
has the following form:

4 ne’s manual

L: 1 C: 1 12% ia----pvu-t------ @A <unnamed>

(the numbers could be different, and a file name could be stasnast item instead oktinnamed>").
You probably already guessed that the numbers alfterand ‘C:’ are your cursor’s line and column
numbers, respectively, whereas the percentage indicpfgexamately your position in the file. The
small letters represent user flags that you can turn on anthgffarticular, i ’ tells you that insert mode
is on, while p’ tells that the automatic preferences system is activateda thorough explanation of the
meaning of the flags on the status bar, see Section 3.2 [ThesBar], page 12.

Once you are accustomed to cursor movement and line editiadime to press F1 (the first function
key), or in case your keyboard does not have such a key, ESCARBediately, themenu barwill
appear, and the first menu will be drawn. (If you find yourseditimg for the menu to appear, you can
press ESCAPE twice in a row.) You can now move around menus and items by pressing the cursor
keys. Moreover, a lower case alphabetic key will move to the ibem in the current menu whose name
starts with that letter, and an upper case alphabetic kdywale to the next menu whose name starts
with that letter.

Moving around the menus should give you an idea of the cagiabilofne. If you want to save
your work, you should use th&ave As... ’item from the File ' menu. Menus are fully discussed in
Section 3.7 [Menus], page 16. When you want to exit from theursyrstem, press F1 (or ESCAPE)
again. If instead you prefer to choose a command and exdcuateve to the respective menu item and
press RETURN.

At the end of several menu items you will find strange symbkés'lA or F1. They represestiortcuts
for the respective menu items. In other words, instead dfatatg, selecting and executing a menu item,
which can take seconds, you can simply press a couple of Réyessymbol * " in front of a character
denotes the shortcut produced by the CONTROL key plus thatctea (we assume here that you are
perfectly aware of the usage of the CONTROL key: it is just agoifi had to type a capital letter
with SHIFT). The descriptions of the formnFrepresent instead function keys. Finally, the symbol
‘[" in front of a character denotes the shortcut produced by CR®II plus META (a.k.a. ALT) plus
that charactempr META plus that character, depending on your terminal emwatmu must check by
yourself. Moreover, these last bindings could not work witime terminals, in which case you can
replace them with a sequence: just press the ESCAPE key fedldoy the letter. A few menu items are
bound to two control sequences (just in case one does not woitkis impractical).

Note that under certain conditions (for instance, whilegsie through aelnet connection) some
of the shortcuts might not work because they are trappedéogplrating system for other purposes (see
Chapter 6 [Hints and Tricks], page 59).

Finally, we have the third and last interface ie’s features: thecommand line If you press
CONTROL- K, or ESCAPE followed by:" (a lavi), you will be requested to enter a command to ex-
ecute. Just press RETURN for the time being (or, if you areyéatierested in this topic, see Section 3.4
[The Command Line], page 14).

In the sections that follow, when explaining how to use a camdhwe shall usually describe the
corresponding menu item. The related shortcut and commambe found on the menu item itself, and
in Section 3.7 [Menus], page 16.

2.3 Loading and Saving

The first thing to learn about an editor is how to exit. has aCloseDoc command that can be activated
by pressingCONTROL- Q, by choosing theClose ' item of the ‘Document’ menu, or by activating the
command line withCONTROL- K, writing ‘cd’ and pressing RETURN. Its effect is to close the current
document without saving any modifications. (You will be resied to confirm your choice in case the
current document has been modified since the last save.)

There is also @uit command, which closes all the documents without saving aogifications,
and aSave&Exit (META- X) command, which saves the modified documents before quittin

Chapter 2: Basics 5

This choice of shortcuts could surprise you. Wouldr@Quit * be a much better candidate for
CONTROL- @? Well, experience shows that the most common operatioro&ng a document rather
than quitting the editor. If there is just one document, thie bperations coincide (this is typical, for
instance, when you use for writing electronic mail), and if there are many docunserit is far more
common to close a single document than all the existing deosn

If you want to load a file, you may use tl@pen command, which can be activated by pressing
CONTROL- O, by choosing theOpen... ' item of the ‘File ’ menu, or by typing it on the command line
(as in the previous case). You will be prompted with a list lefsfiand directories in the current working
directory. (You can tell the directory names because thelywbth a slash; they will also appear in a
bold face if your terminal allows it.) You can select any o tlile names by using the cursor keys, or
any other movement key. Pressing an alphabetic key will nbgecursor to the first entry after the
cursor that starts with the given letter. When the cursoo#tipned over the file you want to open, press
RETURN, and the file will be opened. If instead you move to a dimgcname, pressing RETURN will
display the contents of that directory.

You can also escape with F1, ESCAPE or ESCAPE-ESCAPE and mpiyadlthe file name on the
command line (or escape again, and abortdpen operation). If you escape with TAB instead, the file
or directory under the cursor will be copied in the input Jimdrere you can modify it manuallye has
also file name completion features activated by TAB (seei@e8t3 [The Input Line], page 13).

When you want to save a file, just use the commaade (CONTROL-S). It will use the current
document name or will ask you for one if the current documestrio nameSaveAs, on the other hand,
will always ask for a new name before saving the file.

If ne is interrupted by an external signal (for instance, if yanmntinal crashes), it will try to save
your work in some emergency files. These files will have narimaas to your current files, but they
will have a pound sign#’ prefixed to their names. See Section 3.10 [Emergency Spagk 24.

2.4 Editing

An editor is presumably used for editing text. If you decide to edit text, you probably don’t want to
usene, because that’s all it does—it edits text. It does not flayis . It does not evaluate recursive
functions. It does not solve your love problems. It justwhoyou to edit text.

The design ohe makes editing extremely natural and straightforward. &hgmnothing special you
have to do to start editing once you've started Just start typing, and the text you type shows up in
your document.

ne provides two ways of deleting characters, the BACKSPACEXINTROL- H, if you have no such
key) and the DELETE key. In the former case you delete theaatar to the left of the cursor, while in
the latter case you delete the character just under thercufrbés is in contrast with manyn* x edi-
tors, which for unknown reasons decide to limit your waysedtdoying things—something notoriously
much funnier than creating. (See Section 4.11.4 [DeletdCbhage 51 and Section 4.11.7 [Backspace],
page 51.)

If you want to delete a line, you can use theleteLine command, OICONTROL- Y. A very nice
feature ofne is that each time a nonempty line is deleted, it is stored engpbrary buffer from which
it can be undeleted via thendelLine command OICONTROL- U. (See Section 4.11.9 [DeleteLine],
page 51 and Section 4.7.3 [UndelLine], page 35.)

If you want to copy, cut, paste, shift or erase a block of tgat) have to set a mark. This is done via
the Mark command, activated by choosing theark Block ’item of the ‘Edit ' menu, or by pressing
CONTROL- B (think “block™). This command sets the mark at the currentsou position. Whenever the
mark is set, the zone between the mark and the cursor can beopitd or erased. Note that by using
CONTROL- @you can set &ertical mark instead, which allows you to mark rectangles of textewdver
a mark has been set, either ahappears on the command line ond appears if the mark is vertical. If
you forget where the mark is currently, you can use thatd Mark ' menu item of the Search ' menu
to move the cursor to it.

6 ne’s manual

When you cut or copy a block, you can save it with tBave Clip... ' menu item of the Edit ’
menu. You can also load a file into a clip withpen Clip... ', and paste it anywhere. All such
operations act on theurrent clig which is by default the clip 0. You can change the curremt elimber
with the ClipNumber command. See Section 4.4.11 [ClipNumber], page 30.

One of the most noteworthy featuresref is its unlimited undo/redaapability. Each editing action
is recorded, and can be played back and forth as much as ymullkdo and redo are bound to the
function keys F5 and F6.

Another interesting feature ot is it’s ability to load an unlimited number of documents. tiyacti-
vate theNewDoccommand (using thedocument’ menu or the command line), a new, empty document
will be created. You can switch between the existing documgnmemory with F2 and F3, which are
bound to thePrevDoc andNextDoc commands. If you have a lot of documents, tBeléct... 'menu
item (F4) prompts you with the list of names of currently leddlocuments and allows you to choose
directly what to edit.

2.5 Basic Preferences

ne has a number oflags that specify alternative behaviors, the most prototypeample being the
insertflag, which specifies whether the text you type is inserted ihé existing text or overwrites it.
You can toggle this flag with therdsert ’ menu item of the Prefs ' menu, or with the INSERT key of
your keyboard. Togglemeans to change the value of a flag from true to false, or frdse ta true; see
Section 4.9.4 [Insert], page 39.)

Another important flag is thiree formflag, which specifies whether the cursor can be moved beyond
the right end of each line of text or only to existing text (avilg. Programmers usually prefer non free
form editing; text writers seem to prefer free form. See Bact.9.6 [FreeForm], page 39 for some
elaboration. The free form flag can be set with theé Form ' menu item of the Prefs ' menu.

At this point, we suggest you explore by trial and error theeofflags of thePrefs ' menu, or try
theFlags command (see Section 4.9.1 [Flags], page 38), which exg#dithe flags and the commands
that operate on them. We prefer spending a few words disayasiomatic preferences autoprefs

Having many flags ensures a high degree of flexibility, butait turn editing into a nightmare if
you have to turn on and off dozens of flags for each differend kif file you edit. ne’s solution is to
automatically set a document’s flags when a file is loadeddase/our stated preferences for edith
type A file’s type is determined by thextensiornof its file name, that is, the last group of letters after
the last dot. For instance, the extensionref.texinfo ' is ‘texinfo ', the extension ofsource.c ’is
‘c’, and the extension ofy.txt 'is ‘txt .

Whenever you select th&ave AutoPrefs *menu item,ne saves the flags of your current document
to be used when you load other files with the same extensioawascurrent document. Theseitoprefs
are saved in afile in youf/.ne ’ directory. This file has the same name as the extension afuhent
document with #ap’ appended to it. It contains all the commands necessarycd@aée your current
document’s flag settings. Whenever you open a file with thésriime extensiome will automagically
recreate your preferred flag settings for that file type. (&his a flag that inhibits the process; see
Section 4.9.2 [AutoPrefs], page 38.)

Finally, when you select theSave Def Prefs ' menu item, a special preferences file named
‘.default#ap ' is saved. These preferences are loaded wheneveas run before loading any file.
This is how you set up the preferences you always want to be set

A small set of preferences are globalrte rather than specific to particular document types. Thus
they are saved in thedefault#ap ' file by the SaveDefPrefs command or theSave Def Prefs ’
menu. They are not saved by tlsaveAutoPrefs command. These preferences arastGUI |,
RequestOrder , StatusBar and VerboseMacros ; see Section 4.9.5 [FastGUI], page 39, See Sec-
tion 4.9.8 [RequestOrder], page 40, See Section 4.9.9 Rat], page 40, and See Section 4.9.17
[VerboseMacros], page 42.

Chapter 2: Basics 7

Similarly, the current syntax definition is specific to theremt document type, so it is saved only
in autoprefs files by th€aveAutoPrefs command or Save AutoPrefs ' menu; it is not saved in the
‘default#ap '’ file.

Note also that a preferences file is just a macro (as desdiniltbe following section). Thus, it can
be edited manually if necessary.

2.6 Basic Macros

Very often, the programmer or the text writer has to repeatesoomplex editing action over a series of
similar blocks of text. This is whermacroscome in.

A macrois a stored sequence of commands. Any sequence of commanméisgyourself repeating
is an excellent candidate for being made into a macro. Yoldatreate a macro by editing a document
that only contains valithe commands and saving it, but by far the easiest way to creatacaonis to
havene record your actionse allows you to record macros and then play them (execute timenaonds
they contain) many times. You can save them on disk for fuiges edit them, or bind them to any key.
You could even reconfigure each key of your keyboard to plagraptex macro if you wanted to.

ne can have any number of named macros loaded at the same tiwem #iso have one unnamed
macro in itscurrent macrdouffer. The named macros are typically loaded from disk filesile the
current macro buffer is where your recorded macro is heldregfou save it or record over it.

Recording a macro is very simple. The keystr@akaNTROL- T starts and stops recording a macro.
When you start recording a macroe clears thecurrent macraobuffer and starts recording all your
actions (with a few exceptions). You can see that you arerdang a macro if anR appears on the
status bar. When you stop the recording process (again GSMEROL- T), you can play the macro with
the ‘Play Once ’ item of the ‘Macros * menu or with the F9 key. If you want to repeat the action many
times, thePlay command allows you to specify a number of times to repeat theron You can always
interrupt the macro’s execution wittONTROL- \ .

A recorded macro has no name. It’s just an anonymous seqoéeoemands in theurrent macro
buffer, and it will go away when you exiie or record another macro. If you want to save your recorded
macro for future use, you can give it a name and save it witH $hee Macro... ' menu item or the
SaveMacro command. The macro is saved as a file in your current diredigrgiefault or whatever
directory you specify when prompted for the macro’s nameyolfi save it in your™.ne ' directory
then it will be easy to access it later from any other dirgctdhe ‘Open Macro... ' menu item and the
OpenMacro command load a macro from a file into the current macro bufifgrgs if you jusRecord ed
it.

Any macro can be loaded from a file and played with thiay Macro... ' menu item or theMacro
command. (This won’t modify any recorded anonymous maaabrtray be in theurrent macrduffer;
OpenMacro does that.) Useful macros can be permanently bound to ark&gsas explained in Sec-
tion 5.1 [Key Bindings], page 55. Moreover, whenever a commlareldoes not specify one ofe’s
built in commands, it is assumed to specify the hame of a mcexecute. Thus, you can execute
macros just by typing their file names. Include a path if themdile’s directory is different from your
current directory or your/.ne ’directory.

If the first attempt to open a macro faitgg checks for a macro with the given name in youimne
directory. This allows you to program simple extensionsd(s language. For instance, all automatic
preferences macros—which are just specially named masabsodntain only commands to set prefer-
ences flags—can be executed just by typing their names. kon@e, if you have an automatic prefer-
ence for thedoc’ extension for example, you can sat’s flags exactly as if you loaded a file ending
with ‘.doc ’ by typing the commandoc#ap .

In general, it is a good idea to save frequently used macrtérie ' so that you can invoke them
by name without specifying a path regardless of your curdé&etctory. On the other hand, if you have
a macro that is customized for one document or a set of dodsniteat you store in one directory, then

8 ne’s manual

you might want to save the macro in that directory as well.olfi glo, then you would want tad to that
directory before you starte so that you can access that macro without specifying a path.

If your macro has the same name as oneed$ built-in commands, you can only access it with the
Macro name command. Built-in command names are always found first befer@ommand interpreter
looks for macros.

The system administrator may make some macros availabie feds global directory. See Sec-
tion 3.1 [Arguments], page 11.

Since loading a macro each time it is invoked would be a radlmv and expensive process, once
a macro has been executed it is cached internally. Subsenmwenations of the macro will used the
cached version.

Warning: while path and file names are case sensitive when initialiyliltg macros, loaded macro
names ar@ot case sensitive or path sensitive. only caches the file name of an already loaded macro,
not the path name, and uses a case insensitive comparisatisTifiyou invoke */foobar/MyMacro ',

ne remembers it with the case-insensitive namgrhacro’; a subsequent call fordsryMYMACRO’ will
instead find and use the cached versiorfiidobar/MyMacro . You can clear the cache by using the

UnloadMacros command. See Section 4.6.6 [UnloadMacros], page 35.

The behaviour of macros may vary with different preferendéshe user changes the Autolndent
and WordWrap flags, for example, new lines and new text mayppéar in the same way they would
have when a macro was recorded. Good general purpose mawidssach problems by using the
PushPrefs command first. This preserves the user’s preferences. Tegnset any preferences that
could affect their behaviour. Once that is taken care of thgyon with the actual work for which they
were intended. Finally, they use tPepPrefs command to restore the user’s preferences. Note that
if a macro is stopped before it restores the preferencedsefdily the user pressir@ONTROL-\ or by a
command failing) then that responsibility falls on the user

Any changes made to a document by a macro are recorded justashad entered the commands
yourself. Therefore you can use thiado command to roll back those changes one at a time. This
can be useful especially when developing macros, but youwaan to be able to undo all the changes
made by a macro with a singléndo command. ThétomicUndo command makes this possible. If you
addAtomicUndo + at the start of your macro amtomicUndo - at the end, then thendo andRedo
commands will handle all changes made by your macro atolpic¢al., as if they had been made by a
single command. See Section 4.7.5 [AtomicUndo], page 36.

Finally, any line in a macro that starts with a non-alphatattharacter is considered a comment, so
you can add comments to a macro by starting a line with °

2.7 More Advanced Features

2.7.1 UTF-8 support

UTF-8 is a character encoding that can represent the wh@ld. (646 character set—two billion charac-
ters! ne can load and manipulate UTF-8 files transparently, in paldicon systems that provide UTF-8
I/0. See Section 3.11 [UTF-8 Support], page 24.

2.7.2 Bookmarks

It often happens that you have to browse through a file, swigcfrequently between a small num-
ber of positions. In this case, you can usgokmarks There are up to ten bookmarks per document,
each designated by a single digit, with the default beirig You can set them with th&etBookmark
command, and you can return to any set bookmark withGteBookmark command. Alsone sets

an automatic bookmark (designated by) ‘to your current position in a document whenever you use
the GotoBookmark command. You can use this automatic bookmark to return togievious loca-
tion with a GotoBookmark - command. Doing so will reset the automatic bookmark, so soit
sequentGotoBookmark - commands will switch between those two locations. The spg@arame-

Chapter 2: Basics 9

ters +1’ and ‘-1’ indicate the next or previous set bookmark in conjunctidgthvGotoBookmark and
UnsetBookmark , but reference the next or previous unset bookmark when wibdSetBookmark .

A sequence ofsotoBookmark +1 commands lets you easily cycle through all your set bookmark
See Section 4.10.26 [SetBookmark], page 49, Section 4.]JG&®Bookmark], page 50, and Sec-
tion 4.10.28 [UnsetBookmark], page 50. Note that in the defaanfiguration no key binding is as-
signed to these commands. If you use them frequently, youwaay to change the key bindings. See
Section 5.1 [Key Bindings], page 55.

2.7.3 Automatic Completion

TheAutoComplete command helps you extend a given prefix with matching wos fyour open doc-
uments. You can specify thiuitoCompete command and prefix on the command line, or you can enter
the prefix directly into your document and activate uoComplete command. With the cursor at the
right end of your prefix, activate theutoComplete command by entering either the ESCAPE-TAB or
the ESCAPE-I key sequence, or tHeNTROL- META- | key combination, or by selectingitoComplete

from theExtras menu.

If the prefix can be extended unambiguously, the extensidiroiimmediately inserted into your
document (this is the case, for instance, if only one worcches the prefix), and a message will tell you
whether the extension is an actual word or just the longestipte extension (for instance, if you expand
‘fo " and your document containgobbar ' and ‘foofoo ' then the partial match will beféo ’). Other-
wise,ne presents you with a list of all matching words: choose theyanewant and press RETURN, to
select it; otherwise, press F1, ESCAPE or ESCAPE-ESCAPE teettmecompletion operation.

The current state of theaseSearch flag determines whether the prefix match is case sensitive. An
matching words which only exist in other open documents bttime current one are displayed in bold
with an asterisk; think of that as a warning that if you setaw of these bold words you will introduce
a new word into your current document. Plain words alreadist somewhere in your current document.
See Section 4.5.11 [AutoComplete], page 33, and Sectioh®[GaseSearch], page 32.

2.7.4 Automatic Bracket Matching

Unless you tell it not to (with théutoMatchBracket ~command),ne will highlight any recognized
bracket that matches the bracket your cursor is on if thathivag bracket is currently visible on your
screen. Recognized brackets afe’; ‘() ’, ‘[] ' and ‘<>’. See Section 4.5.8 [AutoMatchBracket],
page 32.

2.7.5 MS-DOS files

ne will detect automagically the presence of MS-DOS line teatons (CR/LFs) and set the CR/LF
flag. When the file will be saved, the terminators will be restiocorrectly. You can change this be-
haviour using thé>reserveCR andCRLFcommands. See Section 4.9.18 [PreserveCR], page 42, and
Section 4.9.19 [CRLF], page 42.

2.7.6 Binary files

ne allows a simplified form ofbinary editing If the binary flag is set, only NULLs are considered
newlines when loading or saving. Thus, binary files can belg#&baded, modified and saved. Inserting
a new line or joining two lines has the effect of inserting ekeding a NULL. Be careful not to mismatch
the state of the binary flag when loading and saving the same fil

2.7.7 File requester

The NoFileReq command deactivates the file requester. It is intended fargh guys” who always
remember the names of their files and can type them at the gifdigthit (maybe with the help of the
completer, which is activated by the TAB key; see Sectio Bi# Input Line], page 13).

ne’s manual

2.7.8 ExecutinguN* X commands

There are three ways to execute* x commands from withime. The System command can run
any UN*X command; you will get back intae as soon as the command execution terminates. See
Section 4.12.10 [System], page 53. Theough (META-T) command (which can be found in the
‘Edit ' menu), however, is much more powerful; it cuts the currdotk, passes it as standard input
to anyuUN* X command, and pastes the command’s output at the curremrqosition. This provides

a neat way to pass a part of your document through onendgstc’s many filter commandgcommands
that read from standard input and write to standard outpgt, sort). See Section 4.4.12 [Through],
page 30. Finally, you can use tBaspend (CONTROL- Z) command to temporarily stage and return to
your command shell. See Section 4.12.9 [Suspend], page 53.

2.7.9 Advanced key bindings
For an exhaustive list of the remaining features®f see Chapter 3 [Reference], page 11.

Chapter 3: Reference

3 Reference

In this chapter we shall methodically overview each pameof It is required reading for becoming an
expert user because some commands and features are nabkeveirough menus.

3.1 Arguments

The main arguments you can giverte are the names of files you want to edit. They will be loaded into
separate documents. If you specifyelp anywhere on the command line, a simple help text describing
ne’s arguments will be printed.

The+N option causese to advance to thé/th line of the next document loaded. This option is fairly
common among editors and text display programsvikandless . TheN itself is optional. Without it,
a bare+ on the command line causes to advance to the last line of the first document. You can §peci
a line and column asN,M. Any non-digit can be used to separate ttiédrom the M. As it only affects
the next document loaded, it can appear multiple times opdhenand line.

The--binary option causese to load the next document in binary mode. Binary mode treas th
normal line termination characters as any other characigroaly breaks lines on NULL characters.
Like +N,M, --binary only affects the next document loaded, and it can appeaiptautimes on the
command line. See Section 4.9.3 [Binary], page 39.

The --no-config option skips the reading of the key bindings and menu cordigam files (see
Chapter 5 [Configuration], page 55). This is essential if yauexperimenting with a new configuration
and you make mistakes in it.

The--macro fi | enane option specifies the name of a macro that will be started fiist all docu-
ments have been loaded. A typical macro would move the ctwsocertain line.

The--keys fil enane option and the-menus fi | ename option specify a name different from the
default one (‘keys 'and ‘.menus ’, respectively) for the key bindings and the menu configarefiles.
Note thatne searches for these files first in the current directory, aad th your “/.ne ' directory.

The--ansi and the-no-ansi options managee’s built-in ANSI sequences. Usualhg tries to
retrieve from your system some information that is necedsenandle your terminal. If for some reason
this is impossible, you can ask to use a built-in set of sequences that will work on many teatsi
using the-ansi option (to be truene can be even compiled so that it uses directly the built-intset
you need not know this). If you want to be sure (usually forudgling purposes) that is not using the
built-in set, you can specifyno-ansi

The --no-syntax ~ option disablese’s normal syntax highlighting capability. For most editing
situations, this would be unnecessary, but for extremegeléiles it may be helpful. Syntax highlighting
incurs small memory usage and processor overhead perfaltieach line of text. The-no-syntax
option eliminates that overhead.

The--utf8 and--no-utf8 options can be used to force or inhibit UTF-8 I/O, overridihg choice
imposed by the system locale. Note, however, that in geneiglmore advisable to set theANG
environment variable to a locale supporting UTF-8 (you canally see the locale list witlocale
-a). See Section 3.11 [UTF-8 Support], page 24.

If you need to open a file whose name starts with', you can put :- ’ before the filename, which
will skip command recognition for the next word.

Finally, ne has aglobal directorywhere the system administrator can store macros, defafibrpr
ences, and syntax definitions for all users of the system.lddsion of this directory is defined when
ne is built, but you can override it by creating and exporting Mfe_GLOBAL_DIRenvironment variable
prior to invokingne. If you load no files when you statit, or if you invoke theAbout command, it will
display a splash screen. The last line on that screen shevgdahal directoryne is using, if it exists, or
an error message otherwise.

ne’s manual

3.2 The Status Bar

The last line of the screen, tteatus bagris reserved bye for displaying some information about its
internal state. Note that on most terminals it is physicatipossible to write a character on the last
column of the last line, so we are not stealing preciousreglgpace.

The status bar looks more or less like this:
L: 31 C: 25 12% iabcwfpvurtBMRPC * @8 20 /foo/bar

The numbers aftert ' and ‘C:’ are the line and column of the cursor position. The first fmel the
first column are both number 1. Therg, shows the percentage of lines before the current line (ithil
0% on the first line, and 100% on the last line).

Following that are a sequence of letters or dashes. Thesmtadhe status of a series of flags which
we shall look at later.

The hexadecimal digits following the flags give the code for tharacter at the cursor, and are
displayed optionally (see Section 4.9.10 [HexCode], page KGQour cursor is at or beyond the right
end of the current line, the code disappears.

The file name appearing after the character code is the filemdrthe current document. The left
end of very long file names may be truncated to keep the righvisible. Of coursene is keeping track
internally of the complete file name. It is used by e command and as the default input for the
SaveAs command. See Section 4.2.3 [Save], page 26, and Sectign[8&:eAs], page 26.

The displayed line and column numbers, the percentagedtmtiand the character code change when
the cursor moves. This fact can really slow down cursor m@rerif you are usingie through a slow
connection. If you find this to be a problem, it is a good idedutm off the status bar using either
the ‘Status Bar ' menu item of the Prefs ' menu or theStatusBar command. See Section 4.9.9
[StatusBar], page 40. Alternatively you can turn on the fddt ode using either thecast GUI " menu
item of the Prefs ' menu or theFastGUI command (see Section 4.9.5 [FastGUI], page 39). In fast GUI
mode the status bar is not draw in reverse, so some additptialization can be done when refreshing
it.

The letters after the line and column number represent titessbf the flags associated with the
current document. Flags that are off display aihstead of a letter. Each flag also has an associated
command. Thé&lags command describes them all when you don’t have this manumlyhalere’s the
list in detail:

i’ appears if the insert flag is true. See Section 4.9.4 [Ihgeaige 39.

‘a’ appears if the auto indent flag is true. See Section 4.8.8dWdent], page 37.

‘b’ appears if the back search flag is true. See Section 4.58¢BBack], page 32.

‘c’ appears if the case sensitive search flag is true. See 8ectdl0 [CaseSearch], page 32.

‘W appears if the word wrap flag is true. See Section 4.8.7 [Wiap], page 37.

f appears if the free form flag is true. See Section 4.9.6 [Foem], page 39.

‘v’ appears if the automatic preferences flag is true. Seed®et19.2 [AutoPrefs], page 38.

‘v’ appears if the verbose macros flag is true. See Section/[¥etboseMacros], page 42.

‘u’ appears if the undo flag is true. See Section 4.7.4 [DoUnukje 35.

r’ appears if the read only flag is true. See Section 4.9.11 [Rabd, page 40.

T’ appears if the tabs flag is true. It's upper case if the sthfitflag is also true. See Sec-
tion 4.9.14 [Tabs], page 41, Section 4.9.15 [ShiftTabs}epél.

‘B appears if the binary flag is true. See Section 4.9.3 [Binaaye 39.

‘M appears if you are currently marking a block. See Sectidril4Mark], page 28.

Chapter 3: Reference

A% can appear in place oM if you are currently marking a vertical block. See Sectiod.2
[MarkVert], page 28.

‘R appears if you are currently recording a macro. See Sedtiori [Record], page 33.

‘P appears if the PreserveCR flag is true. See Section 4.9.£8¢RreCR], page 42.

‘C appears if the CRLF flag is true. See Section 4.9.19 [CRLF], p&ge 4

S appears if the document has been modified since the lasteav¢he Modified command
was issued to set this flag. See Section 4.9.28 [Modified], gdge

‘@ appears if UTF-8 I/O is enabled. See Section 4.9.32 [UTH3b@ge 46.

‘A/8/U ’ denotes the current buffer encoding—US-ASCII, 8-bit or USF See Section 4.9.30
[UTF8], page 45.

Note that sometimese needs to communicate some message to you. The messagellig wsittan
over the status bar, where it stays until you do somethingy @ation such as moving the cursor or
inserting a character will restore the normal status bar.

3.3 The Input Line

The bottom line of the screen is usually occupied by the sthar (see Section 3.2 [The Status Bar],
page 12). However, wheneves prompts you for a command or file name or asks you to confirm some
action, the bottom line becomes timput line You can see this becaus@rmmptis displayed at the start

of the line, suggesting what kind of input is required. (Ppisralways ends with a colon, so it is easy to
distinguish them fronerror messagesvhich overwrite the status line from time to time.)

ne uses the input line in two essentially different waysimediateinput andlong input. You can
easily distinguish between these two modes because in imteadput mode the cursor is not on the
input line, while for long input mode it is.

Immediate input is used whenewver needs you to specify a simple choice that can be expressed by
one character (for exampleg;’‘or ‘n’). When you type the charactere will immediately accept and
use your input. Most immediate inputs display a charactdrgfter the prompt. This character is the
default response, which is used if you just press the RETURNNMete that immediate input is not case
sensitive. Moreover, if a yes/no choice is requesaegthingother thany’ will be considered a negative
response.

Long input is used when a whole string is required. You caereand edit your response to long
inputs like a line of text in a document. Most key bindings tedeto line editing work on the command
line exactly as they do in a document. This is true even ofoeudtey bindings. Just edit as you are used
to. Moreover, the you can paste the first line of the curreptuding the keystroke that is bound to the
Paste command, usuallfZONTROL- V. If your long input is longer than the screen width, the injmg
scrolls to accommodate your text so you can input very longslieven on small monitors. (There is a
limit of 2048 characters.)

The default response to a long input is the response you gae tprevious long input. Yodfirst
actionwhen presented with a long input will either erase the défasiponse or allow you to edit it. If
the first thing you type is a printing character, the defaesponse will be erased. Anything else (cursor
movement for example) will allow you to edit it further.

Long input also lets you access your previous long inputoreses with the up and down cursor
commands (or with wider movement commands, such as stdnfdile, page up/down, etc.). Once you
find a previous input you like, you can edit it further. Longin history is not document specific, so you
can recall any of your inputs regardless of which documestazsive when you entered it. Furthermore,
ne saves the most recent long inputs hne/.history "when you end youne session and loads
them again when you begin another session.

ne’s manual

When asked to input a number, you can choose between dedotal,and hexadecimal notation
in the standard way: a number starting with is considered in octal, a number starting withx" is
considered in hexadecimal, and in all other cases decinsal isaassumed.

Whenever a file name is requested, you can type a partial fiteeremdcompleteit with the TAB
key. ne will scan the current directory (or the directory that youtjadly specified) and search for the
files matching your partial suggestion. The longest prefixmmn to all such files will be copied on
the input line Ge will beep if no completion exists). It's easier done thardsajust try. If you press
TAB again, you will be brought into the file requester: onlgtfiles and directories matching your
partial specification will appear, and as usual you will bledb navigate and select a file or escape. See
Section 3.5 [The Requester], page 14. Note teatonsiders théast wordon the input line the partial
file name to complete, no matter where the cursor is curréptiy must use quotes if the name contains
spaces, even if it is the only item on the input line).

Complete long input with the RETURN key. You can cancel a longuingsing F1, ESCAPE,
ESCAPE-ESCAPE or any key that is bound to #tezape command. The effect will vary depend-
ing on what your were requested to input, but the executioth@fcommand requiring the input will
stop.

3.4 The Command Line

The command line is a typical (topical) way of controllingedhitor on character driven systems. It has
some advantages over menus in terms of access speed, huttitdesirable from a user interface point
of view. ne has a command line that should be used whenever strangecfeatave to be accessed, or
whenever you want to use a command that you are familiar withtlaat is not bound to any key.

You have two ways to access the command line: by activatiegbnu and typing a colon: () or by
typing CONTROL- K (or any key that is bound to thigxec command; see Section 4.12.4 [Exec], page 52).
The first method will work regardless of any key binding coufagion if you activate the menus with
the ESCAPE key since that key cannot be reconfigured. Of cotlvsee is also a menu entry that does
the same job.

Once you activate the command line, the status bar will totm &n input line (see Section 3.3 [The
Input Line], page 13) with aCommand: prompt waiting for you to do a long input. In other words, you
can now type any command (possibly with arguments), and whbernpress RETURN, the command
will be executed.

If the command you specify does not appeatiérs internal tables, it is considered to be the name of
a macro. See Section 2.6 [Basic Macros], page 7, for details.

3.5 The Requester

In various situationse needs to ask you to choose one string from several (whereraécan mean

a lot). For this kind of event, theequesteiis issued. The requester displays the strings in as many
columns as possible and lets you move with the cursor fromstiirgg to another. The strings can fill
many screens, which are handled as consecutive pages. Magitian keys work exactly as in normal
editing. This is true even of custom key bindings. Thus, fi@tance, you can page up and down through
the list with CONTROL- P andCONTROL- N (in the standard keyboard configuration).

As with the input line (see Section 3.3 [The Input Line], pd§?, you can confirm your input with
RETURN or escape the requester with F1 or the ESCAPE key (or wérales been bound to the
Escape command). Moreover, if you are selecting a file name there lisrd possibility: by escaping
with the TAB key, the file or directory name that the cursorusrently on will be copied on the input
line. This allows you to choose an existing name and modify it

A special feature is bound to alphabetic characters: theyeryiou to the next entry starting with the
letter you typed. The search is case insensitive, and iiraogd on to the first string after having passed
the last one.

Chapter 3: Reference

An example of a requester is the list of commands appearingnwiou use thédelp command.
Another is the list of document words matching a prefix givetheAutoComplete command. A third
example is the file requester that issues whenever a file operation is going to take place. sncthse,
pressing RETURN while on a directory name will enter the dogctNote also that, should the requester
take too long to appear, you can interrupt the directory siceywith CONTROL- \ . However, the listing
will likely be incomplete.

Note that there are two items that always appear in the filaestgr: / ' and ../ '. The first
one represents the current directory and can be used todaeead of the directory. The second one
represents the parent directory and can be used to move upetdit@ctory level.

The requester presents the strings by default in “row majdery which means the second string
is on the same row as the first but to its right, at the top of #esd column, and so on across each
row before filling in the next row down. If you prefer your kstlisplayed in “column major order"—the
first, second, and third strings are in the same column anld @alamn is filled before starting on the
next column to the right—then use tRequestOrder command to switch that preference. The setting
will be stored in your default preferences the next time yavesthem. See Section 4.9 [Preferences
Commands], page 38.

3.6 Syntax Highlighting

Syntax highlighting is particularly useful for programrgifanguage text or other types of documents
which have a strictly defined syntax. Colors indicate diffeérgyntactic categories of text according to
the syntax definition in use.

Syntax definitions are stored in separate files.comes with a suite of syntax definitions for many
popular programming languages. When you load a fikeselects the appropriate syntax definition as
determined by the filename extension in much the same waymaitoare loaded. It also contains a
built-in table of common filename extensions that share éimeessyntax definitions. For example, both
‘cbl ’, and ‘cob’ files use the tobol ' definition. See the Section 4.9.29 [Syntax], page 44 condrian
the complete list of built-in extension mappings.

If there is no matching syntax definition for the filename asten, or if the buffer you are editing
has no filename yet, or you just want to try a different syntafktion, you can load and use the syntax
definition of your choice with the&yntax command. It takes the syntax name as a parameter. For
example, the namec” works for C syntax files with extensions'’, *.h ’, ‘c++’, etc. ne searches for
the specified syntax definition file in theyhtax * subdirectory of your“.ne ’ directory first. If not
found therepe then looks in thesyntax ’* subdirectory ofne’s global directory for the syntax definition
file. See Section 3.1 [Arguments], page 11.

With no parameter, th8yntax command prompts you for a syntax to load, the offered dekaaittg
the currently loaded syntax if there is one.

One syntax definition you may find useful for any type of tex fil called simplytabs . It high-
lights theTABS in your text so you can distinguish them from regular spaces

You can create your own syntax definitions and store them um {ane/syntax " directory (ac-
tually, modifying the colors of an existing definition is ntueasier; see Chapter 6 [Hints and Tricks],
page 59). A complete explanation of syntax specificatiorseigond the scope of this document, but
the existing definition files should prove to be useful exaapln particular, thesyntax/c.jsf ' file
contains some particularly helpful comments. Syntax didimifiles have a.Jsf ' extension. Do not
include that extension when using thgntax command.

Syntax highlighting does incur a slight penalty in memorgdiper line of text, and it also consumes
some CPU resources. For small to medium sized files you’ll sdobbnever notice. But for extremely
large files—on the order of the size of your system’s RAM—théedénce could be significant. If you
invokene with the--no-syntax ~ parameteme will disable the syntax highlighting mechanism entirely,
freeing up the memory and CPU otherwise consumed. (Notefthiatiiare that tight on memory, you
may need to disable the undo buffer as well. See Section D8dndo], page 35.)

ne’s manual

ne uses code from another editor—the GPL-licenged—for its syntax highlighting capabilities.
Because of this fact, the syntax definition files are identieaén to the jsf ' extension, which is an
acronym for “Joe’s Syntax File”. It's possible that if bgtle andne are installed on your system that
they share the same syntax file directory.

3.7 Menus

ne’s menus are extremely straightforward. The suggested Whaaming their use is by trial and error,
with a peek here and there at this manual when some doulbés aris

You activate menus with the F1 key, or in case your keyboags adwt have such a key, ESCAPE,
ESCAPE-ESCAPE or any key that is bound to Hseape command. Move around the menus pressing
with the cursor keys and the page up/down keys (which movidditst or last menu item in a menu).
You can also move around menus and menu items by pressindptieoatic keys; a lower case letter
will move to the first item in the current menu whose name staith the given letter; an upper case
letter will move to the first menu whose name starts with themietter.

Each menu item ofie’s standard menu corresponds to a single command. In expdaivhat each
menu item allows you to do, we shall simply refer you to theisedhat explains the command relative
to the menu item.

If you plan to changene’s menu (see Section 5.2 [Changing Menus], page 56), you sttakéd
a look at the file default.menus '’ that comes withne’s distribution. It contains a complete menu
configuration that clones the standard one.

3.7.1 File

The File menu contains standard items that allow loadingsawihg files. Quittingne (which doesn't
save changes) or exiting (which does save changes) is also possible.

‘Open... ' See Section 4.2.1 [Open], page 26.

‘Open New...
See Section 4.2.2 [OpenNew], page 26.

‘Save’ See Section 4.2.3 [Save], page 26.

See Section 4.2.4 [SaveAs], page 26.

‘Save As...

‘Quit Now ’
See Section 4.3.1 [Quit], page 27.

‘Save&Exit ’
See Section 4.3.2 [Exit], page 27.

‘About ’ See Section 4.12.1 [About], page 52.

3.7.2 Documents

The Documents menu contains commands that create new dotsjmdestroy them, and browse through
them.

‘New See Section 4.3.3 [NewDoc], page 27.
‘Clear ’ See Section 4.3.4 [Clear], page 27.
‘Close ’ See Section 4.3.5 [CloseDoc], page 27.
‘Next ’ See Section 4.3.6 [NextDoc], page 27.
‘Prev’ See Section 4.3.7 [PrevDoc], page 27.
‘Select... ’

See Section 4.3.8 [SelectDoc], page 27.

Chapter 3: Reference

3.7.3 Edit
The Edit menu contains commands related to cutting andnupiskt.
‘Mark Block ’
See Section 4.4.1 [Mark], page 28.
‘Cut’ See Section 4.4.4 [Cut], page 29.
‘Copy’ See Section 4.4.3 [Copy], page 28.
‘Paste ’ See Section 4.4.5 [Paste], page 29.
‘Erase ’ See Section 4.4.7 [Erase], page 29.

‘Through ' See Section 4.4.12 [Through], page 30.

See Section 4.11.9 [DeleteLine], page 51.

‘Delete Line

‘Delete EOL ’
See Section 4.11.10 [DeleteEOL], page 52.

‘Mark Vert ’
See Section 4.4.2 [Mark\Vert], page 28.

‘Paste Vert '’
See Section 4.4.6 [PasteVert], page 29.

See Section 4.4.9 [OpenClip], page 29.

See Section 4.4.10 [SaveClip], page 30.

3.7.4 Search

The Search menu contains commands related to searchingdoifis contents or locations within a
document.

‘Find... ' See Section 4.5.1 [Find], page 30.

‘Open Clip...

‘Save Clip...

‘Find RegEXxp...
See Section 4.5.2 [FindRegEXxp], page 30.

’

‘Replace...
See Section 4.5.3 [Replace], page 31.

‘Replace Once...
See Section 4.5.4 [ReplaceOnce], page 31.

‘Replace All...
See Section 4.5.5 [ReplaceAll], page 31.

‘Repeat Last
See Section 4.5.6 [RepeatLast], page 32.

See Section 4.10.5 [GotoLine], page 46.

‘Goto Col... '’
See Section 4.10.6 [GotoColumn], page 47.

‘Goto Line...

‘Goto Mark... '
See Section 4.10.7 [GotoMark], page 47.

‘Match Bracket ’
See Section 4.5.7 [MatchBracket], page 32.

‘Set Bookmark ’
See Section 4.10.26 [SetBookmark], page 49.

’

‘Unset Bookmark
See Section 4.10.28 [UnsetBookmark], page 50.

‘Goto Bookmark ’
See Section 4.10.27 [GotoBookmark], page 50.

3.7.5 Macros
The Macros menu contains commands related to creating angl ongicros.

‘Record’ See Section 4.6.1 [Record], page 33.
‘Stop ’ See Section 4.6.1 [Record], page 33.

‘Replace...
See Section 4.5.3 [Replace], page 31.

‘Play Once
‘Play Many...

See Section 4.6.2 [Play], page 33.

‘Play Macro...
See Section 4.6.3 [Macro], page 34.

‘Open Macro...
See Section 4.6.4 [OpenMacro], page 34.

‘Save Macro...
See Section 4.6.5 [SaveMacro], page 34.

3.7.6 Extras

This menu contains a few special items that don't fit in obgimays into other menus.

‘Exec... ' See Section 4.12.4 [Exec], page 52.
‘Suspend’ See Section 4.12.9 [Suspend], page 53.
‘Help... ' See Section 4.12.6 [Help], page 52.
‘Refresh ' See Section 4.12.8 [Refresh], page 53.
‘Undo’ See Section 4.7.1 [Undo], page 35.
‘Redo’ See Section 4.7.2 [Redo], page 35.

‘Undel Line ’
See Section 4.7.3 [UndelLine], page 35.

‘Center See Section 4.8.1 [Center], page 36.

‘Shift Right
‘Shift Left ’
See Section 4.4.8 [Shift], page 29.

‘Paragraph ’
See Section 4.8.2 [Paragraph], page 36.

ne’s manual

Chapter 3: Reference

‘Adjust View '’
‘Center View '’
See Section 4.10.23 [AdjustView], page 49.

‘ToUpper ' See Section 4.8.3 [ToUpper], page 36.
‘ToLower ' See Section 4.8.4 [ToLower], page 37.
‘Capitalize

See Section 4.8.5 [Capitalize], page 37.

3.7.7 Navigation
The Navigation menu contains commands related moving a@rgua document.

‘Move Left ’
See Section 4.10.1 [MoveLeft], page 46.

‘Move Right ’
See Section 4.10.2 [MoveRight], page 46.

‘Line Up ' See Section 4.10.3 [LineUp], page 46.

‘Line Down ’
See Section 4.10.4 [LineDown], page 46.

‘Prev Page ’
See Section 4.10.8 [PrevPage], page 47.

‘Next Page ’
See Section 4.10.9 [NextPage], page 47.

‘Page Up’ See Section 4.10.10 [PageUp], page 47.

‘Page Down’

See Section 4.10.11 [PageDown], page 47.
‘Start Of File '

See Section 4.10.19 [MoveSOF], page 48.
‘End Of File ’

See Section 4.10.18 [MoveEOF], page 48.

‘Start Of Line '
See Section 4.10.15 [MoveSOL], page 48.

‘End Of Line ’
See Section 4.10.14 [MoveEOL], page 48.

‘Top Of Screen '’
See Section 4.10.16 [MoveTOS], page 48.

‘Bottom Of Screen
See Section 4.10.17 [MoveBOS], page 48.

‘IncrUp ' See Section 4.10.21 [MovelncUp], page 48.

‘Incr Down '’
See Section 4.10.22 [MovelncDown], page 49.

‘Prev Word ’
See Section 4.10.12 [PrevWord], page 47.

‘Next Word ’
See Section 4.10.13 [NextWord], page 48.

ne’s manual

3.7.8 Prefs
The Prefs menu contains commands related to setting, gt@nird using your preferred document flags.

‘Tab Size... '’
See Section 4.9.13 [TabSize], page 41.

‘Tabs/Spaces
See Section 4.9.14 [Tabs], page 41.

‘Insert/Over
See Section 4.9.4 [Insert], page 39.

‘Free Form
See Section 4.9.6 [FreeForm], page 39.

‘Status Bar
See Section 4.9.9 [StatusBar], page 40.

‘Hex Code’
See Section 4.9.10 [HexCode], page 40.

‘Fast GUI ’
See Section 4.9.5 [FastGUI], page 39.

‘“Word Wrap’
See Section 4.8.7 [WordWrap], page 37.

‘Right Margin
See Section 4.8.6 [RightMargin], page 37.

‘Auto Indent '’
See Section 4.8.8 [Autolndent], page 37.

‘Preserve CR ’
See Section 4.9.18 [PreserveCR], page 42.

‘Save CR/LF’
See Section 4.9.19 [CRLF], page 42.

‘Visual Bell ’
See Section 4.9.20 [VisualBell], page 43.

‘Load Prefs... '
See Section 4.9.23 [LoadPrefs], page 43.

‘Save Prefs...
See Section 4.9.24 [SavePrefs], page 44.

‘Load AutoPrefs ’
See Section 4.9.25 [LoadAutoPrefs], page 44.

’

‘Save AutoPrefs
See Section 4.9.26 [SaveAutoPrefs], page 44.

‘Save Def Prefs
See Section 4.9.27 [SaveDefPrefs], page 44.

3.8 Regular Expressions

Regular expressions are a powerful way of specifying compéarch and replace operatiome. sup-
ports the full regular expression syntax on US-ASCII andt&bifers, but has to impose a restriction on
character sets when searching in UTF-8 text. See Sectidrf3TF-8 Support], page 24.

Chapter 3: Reference

3.8.1 Syntax

The following section is taken (with minor modificationspifin the GNU regular expression library
documentation and is Copyrig® Free Software Foundation.

A regular expression describes a set of strings. The simpéss is one that describes a particular
string; for example, the stringdo ' when regarded as a regular expression matctwes’ ‘and nothing
else. Nontrivial regular expressions use certain speoiadtructs so that they can match more than one
string. For example, the regular expressio|bar ' matches either the stringoo ’ or the string bar ’;
the regular expressiowr[ad] *r’ matches any of the stringsr'’, ‘car ’, ‘cdr ’, ‘ caar ’, ‘ cadddar ’and
all other such strings with any number af’'s and ‘d”s.

Regular expressions have a syntax in which a few characterspacial constructs and the rest are
ordinary An ordinary character is a simple regular expression whiekches that character and nothing
else. The special charactersasg *~’, ., ‘", "+, '2",'[', '], (', ") "and '\ ". Any other character
appearing in a regular expression is ordinary, unless arecedes it.

For example,f’ is not a special character, so it is ordinary, and therefbrés a regular expression
that matches the string " and no other string. (It doesot match the stringff ') Likewise, ‘o’ is a
regular expression that matches ondy; *

Any two regular expressions and b can be concatenated. The result is a regular expression that
matches a string i@ matches some amount of the beginning of that stringtanthtches the rest of the
string.

As a simple example, we can concatenate the regular expnasti and ‘o’ to get the regular ex-
pressionfo ’, which matches only the strindgo '. Still trivial.

Note: special characters are treated as ordinary onesyifatieein contexts where their special mean-
ings make no sense. For exampidpb ’treats %’ as ordinary since there is no preceding expression on
which the %’ can act. Itis poor practice to depend on this behavioutghéd quote the special character
anyway, regardless of where is appears.

The following are the characters and character sequenae$dlie special meaning within regular
expressions. Any character not mentioned here is not dpiatands for exactly itself for the purposes
of searching and matching.

is a special character that matches anything except a newlUsing concatenation, we
can make regular expressions likeb ’, which matches any three-character string which
begins with &’ and ends withb'.

* is not a construct by itself; it is a suffix, which means thegeding regular expression is to
be repeated as many times as possiblefolr *, the ‘=" applies to the é’, so ‘fo ' matches
‘f * followed by any number ofd’’s.

The case of zerm”’s is allowed: ‘fo ' does matchf'.

‘=" always applies to themallestpossible preceding expression. Thus,*’ has a repeat-
ing ‘o’, not a repeatingfob .

‘+' is like ‘+’ except that at least one match for the preceding patteragsired for +'.
Thus, clad]+r ’does not matchcr ' but does match anything else thafdd] =r’ would
match.

e ‘?"is like ‘=’ except that it allows either zero or one match for the praggg@attern. Thus,
‘clad]?r 'matchesér ' or ‘car ' or ‘cdr ’, and nothing else.

‘.1 ' ‘[’ begins acharacter setnvhich is terminated by 4 °. In the simplest case, the charac-
ters between the two form the set. Thuad] ' matches eitherd’ or ‘d’, and ‘[ad] =’
matches any string of”’s and ‘d"”s (including the empty string), from which it follows
that ‘clad] *r’ matchestar ’, et cetera

Character ranges can also be included in a character set,itiygwwo characters with a
‘-’ between them. Thus[d-z] ’matches any lower-case letter. Ranges may be intermixed

ne’s manual

freely with individual characters, as ifa:z$%.] ', which matches any lower case letter or
‘$’, "% or period.

Note that the usual special characters are not special angy imside a character set. A
completely different set of special characters existslmsharacter setst”*, ‘- "and .

Toinclude a] ' in a character set, you must make it the first character. kamgle, [Ja] ’
matches] ' or ‘a’. To include a -’, you must use it in a context where it cannot possibly
indicate a range: that is, as the first character, or immelgafter a range.

Note that when searching in UTF-8 text, a character set matagoUS-ASCII characters
only.

‘I...1 ' ‘['begins acomplement character sgthich matches any character except the ones spec-
ified. Thus, ["a-z0-9A-Z] ' matches all characteexceptletters and digits. Also in this
case, when searching in UTF-8 text a complemented charsetenay contain US-ASCII
characters only.

‘“is not special in a character set unless it is the first charad’he character following
the "’ is treated as if it were first (it may be a*ora ‘]).

~ is a special character that matches the empty string — bytifoett the beginning of a line in
the text being matched. Otherwise it fails to match anythiftius, “foo ' matches afoo ’
that occurs at the beginning of a line.

‘$’ is similar to “ * but matches only at the end of a line. Thuss#$’ matches a string of one
or more X"s at the end of a line.

\’ has two functions: it quotes the above special charactectu@ding \ ’), and it introduces
additional special constructs.

Because\'’ quotes special characterss$ ’ is a regular expression that matches orgy; *
and \[' is a regular expression that matches orjly and so on.

For the most part,\" followed by any character matches only that character. el
there are several exceptions: characters which, whengedd®y \ ’, are special constructs.
Such characters are always ordinary when encountered inrotire

specifies an alternative. Two regular expressianand b with ‘|’ in between form an
expression that matches anything that eitiner b will match.

Thus, foolbar ’ matches eitherfbo ’ or ‘bar ’ but no other string.

‘| " applies to the largest possible surrounding expressi@mdy a surrounding(‘...) '
grouping can limit the grouping power df"

‘(...) ' isagrouping construct that serves three purposes:
1. To enclose a set of * alternatives for other operations. Thu@pblbar)x ' matches

either foox 'or ‘barx .

2. Toenclose a complicated expression for the postfito'operate on. Thuspa(na) *’
matchesbananana ' et ceterawith any (zero or more) number afa’s.

3. To mark a matched substring for future reference.

This last application is not a consequence of the idea of anplagtical grouping; it is a
separate feature that happens to be assigned as a secondgrteahe same('...) '’
construct because there is no conflict in practice betweerivtb meanings. Here is an
explanation of this feature:

‘\digit’ Aftertheendofa(..) ’'construct,the matcher remembers the beginning and erukof t
text matched by that construct. Then, later on in the regexaression, you can use’*
followed by digit to mean “match the same text matched thgit'th time by the ...

Chapter 3: Reference

)’ construct.” The (...) ' constructs are numbered in order of commencement in the
regexp.

The strings matching the first nin€.:.) ' constructs appearing in a regular expression
are assigned numbers 1 through 9 in order of their beginnihgs through 19 ' may be
used to refer to the text matched by the corresponding)® ' construct.

For example, (.(+)\1 ' matches any non empty string that is composed of two idehtic
halves. The(.+) 'matches the first half, which may be anything non empty, bat' ’

that follows must match the same exact text.

‘b’ matches the empty string, but only if it is at the beginningemd of a word. Thus,
‘“\bfoo\b ' matches any occurrence dbb ' as a separate word\bball(s|)\b "matches
‘ball ’or‘balls ’as a separate word.

B’ matches the empty string, provided itrist at the beginning or end of a word.

<’ matches the empty string, but only if it is at the beginnidigavord.

>’ matches the empty string, but only if it is at the end of a word

“\Ww’ matches any word-constituent character. These are USHAB@¢rs, numbers and the

underscore, independently on the buffer encoding.

“w matches any character that is not a word-constituent.

3.8.2 Replacing regular expressions

Also the replacement string has some special feature whiag daegular expression search and replace.
Exactly as during the search, followed by digit stands for “the text matched tlgit'th time by the
‘(...) 'constructin the search expression”. Moreovér, ‘represent the whole string matched by the
regular expression. Thus, for instance, the replace stiing ' has the effect of doubling any string
matched.

Another example: if you search fofa+)(b+) ', replacing with \2x\1 ’, you will match any string
composed by a series af’'s followed by a series ofts”’s, and you will replace it with the string obtained
by moving the &’ in front of the ‘b”s, adding moreoverx’ inbetween. For instanceadaab ' will be
matched and replaced blyxaaaa '.

Note that the backslash character can escape itself. Thpst & backslash in the replacement string,

you have to use\ .

3.9 Automatic Preferences

Automatic preferences let you set up a custom configuratiahis automatically used whenever you
open a file with a given extension. For instance, you may p@fe\B size of three when editing C
sources, but eight could be more palatable when writingreeic mail.

The use of autoprefs is definitely straightforward. You dimpse the Save AutoPrefs ' menu
item (or theSaveAutoPrefs command; see Section 4.9.26 [SaveAutoPrefs], page 44) thieesurrent
document has the given extension and the current configaratiits your tastes. The internal state
of a series of options will be recorded as a macro containmmgreands that reproduce the current
configuration. The macro is then saved in thieé ’ directory (which is created if necessary) with the
name given by the extension, postfixed withap’. Thus, the C sources automatic preferences file will
be namedd#ap ', the one for EX files ‘tex#ap ', and so on.

Macros are generated with short or long command names deggendithe status of the verbose
macros flag. See Section 4.9.17 [VerboseMacros], page 42.

Automatic preferences files are loaded and executed whemefile with a known extension is

opened. Note that you can manually edit such files, and ewsmrticommands, but any command that
does something other than setting a flag will be rejected aarerror message will be issued.

ne’s manual

3.10 Emergency Save

Whenne is interrupted by an abnormal event (for instance, the codgbur terminal), it will try to save
all unsaved documents in its current directory. Named deruswill have their names prefixed with
a ‘#’. Unnamed documents will be given names made up of hexadciombers obtained by some
addresses in memory that will make them unique.

3.11 UTF-8 Support

Since version 1.3(e can manipulate UTF-8 files and supports UTF-8 when commtingavith the
user. At startuppe fetches the system locale description, and checks whetlwantains the string
‘utf8 " or ‘utf-8 . In this case, it starts communicating with the user usifig-t8. This behaviour can
be modified either using a suitable command line option (seeSection 3.1 [Arguments], page 11), or
using Section 4.9.32 [UTF8IO], page 46. This makes it pdss$ddisplay and read from the keyboard a
wide range of characters.

Independently of the input/output encodimg, keeps track of the encoding of each buffies. does
not try to select a particular coding on a buffer, unlessfivised to do so, for instance because a certain
character is inserted. Once a buffer has a definite encoldavegver, it keeps it forever.

More precisely, every buffer may be in one of thexeoding modedJS-ASCII, when it is entirely
composed of US-ASCII characters; 8-bit, if it contains aldeocharacters, but it is not UTF-8 encoded;
and finally, UTF-8, if it is UTF-8-encoded.

The behaviour ofie in US-ASCII and 8-bit mode is similar to previous versionscleayte in the
buffer is considered a separate character.

There are, however, two important differences: first, if ig&hot UTF-8 encodedany encoding of
the 1SO-8859 family will work flawlessly, ase merely reads bytes from the keyboard and displays
bytes on the screen. On the contrary, in the case of UTF-&/miputne must take a decision as to
which encoding is used for non-UTF-8 buffers, and presetilyis hardwired to ISO-8859-1. Second,
since version 1.34, 8-bit buffers use localized casing &radacter type functions. This means that case-
insensitive searches or case foldings will work with, say;iliyy characters, provided that your locale is
set correctly.

In UTF-8 mode, insteadhe interprets the bytes in the buffer in a different way—selvbydes may
encode a single character. The whole process is compledgiggarent to the user, but if you really want
to look at the buffer content, you can switch to 8-bit mode (see Section 4.9.30 [UTF8], page 45).

For most operations, UTF-8 support should be transparentveMer, in some cases, in particular
when mixing buffers with different encodingse will refuse to perform certain operations because of
incompatible encodings.

The main limitation of UTF-8 buffers is that when searching & regular expression in a UTF-8
text, character sets may only contain US-ASCII characters $ee Section 3.8 [Regular Expressions],
page 20). You can, of course, partially emulate a full UTHi8racter set implementation specifying the
possible alternatives using’‘(but you have no ranges).

Chapter 4: Commands

4 Commands

Everythingne can do is specified through a command. Commands can be matygaty on the com-
mand line, bound to a key, to a menu item, or grouped into nsaftmeasier manipulation. If you want
to fully exploit the power ohe, you will be faced sooner or later with using commands diyect

4.1 General Guidelines

Every command ime has a long and a short name. Except in a very few cases, thiansinoe is given by
two or three letters that are the initials of the words thatfthe long name. For instancgesarchBack
has short nam8B, SaveDefPrefs has the short nan®DP, andAdjustView ’s short name i&\V. There
are some exceptions however. The most frequently used codsisaich agxit have one-letter short
names X). Also some commands use a different short name to avoithetawith a more common
command’s short name. For examp#atusBar ’'s short name isST rather thansB to avoid clashes
with SearchBack s short name.

A command always has at most one argument. This is a chos&ation that allowsne’s parsing
of commands and macros to be very fast. Moreover, it nullifeegly all problems related to delimiters,
escape characters, and the like. The unique argument canuralzer, a string, or a flag modifier. You
can easily distinguish these three cases even without tisial by looking at what thidelp command
says about the given command. Note that when a command’'margus enclosed in square brackets, it
is optional.

Strings are general purpose arguments. Numbers are usemtitfyrimternal parameters, such as the
size of aTtAB. A flag modifier is an optional number that is interpreted dieves:

e 0 means clearing the flag;
e 1 (or any positive number) means setting the flag;
e no number means toggling the flag.

Thus, StatusBar 1~ will activate that status bar, while will toggle insert/overstrike. This design
choice is due to the fact that most of the time during intévaatditing you need tehangea flag. For
instance, you may be in insert mode and you want to oversinikeice versa. Absolute settings (those
with a number) are useful essentially for macros. It is reabte to use the fastest approach for the most
frequent interactive event. When a number or a string isiredand the argument is optional, most of
the time you will be prompted to type the argument on the conthiie.

As for the input line, for numeric arguments you can choose/&en decimal, octal and hexadecimal
notation in the standard way: a number starting withis considered in octal, a number starting with
‘Ox’ is considered in hexadecimal, and in all other cases dddase is assumed.

When a number represents how many timeshould repeat an action, it is always understood that
the command will terminate when the conditions for applyitngre no longer true. For instance, the
Paragraph command accepts the number of paragraphs to format. But émmigh paragraphs exists
in the text, only the available ones will be formatted.

This easily allows performing operations on an entire dosniny specifying preposterously huge
numbers as argumentSoUpper 200000000 will make all the words in the document upper case. (At
least, one would hope so!) Note that this is much faster tleaording a macro with the command
ToUpper in it and playing it many times because in the former case t¢inencand has to be parsed just
one time.

In any case, if a macro or a repeated operation takes too yongzan stop it using the interrupt key
(CONTROL-\).

To handle situations such as an argument string startingasppacene implements a simple mech-
anism whereby you can enclose any string argument in douldéeg. If the first non-blank character
after the command and last character of the command linecautdel quotes, the quotes will be removed

ne’s manual

and whatever is left will be used as the string argument. kamgle, theFind command to find a space
could be entered on the command line or in a macreims" " . The only case needing special treat-
ment is when a string starts and ends with double quotes. dinenandrind ""quote™ would locate
the next occurrence of the stringguote” '’ (including the double quotes). Howev&ind onequote”
wouldn't require special treatment because the commanaheggt doesn’t both start and end with a
double quote.

4.2 File Commands

These commands allow opening and saving files. They all aittarcontext of the current document
(i.e., the document displayed when the command is issued).

4.2.1 Open

Syntax:Open [fi | enane]
Abbreviation:O

loads the file specified by thH#enamestring into the current document.

If the optionalfilenameargument is not specified, the file requester is opened, andrgprompted
to select a file. (You can inhibit the file requester openingubing theNoFileReqg command; see
Section 4.9.7 [NoFileReq], page 40.)

If you escape from the file requester, you can input the fileemamthe command line, the default
being the current document name, if available.

If the current document is marked as modified at the time thencand is issued, you have to confirm
the action.

4.2.2 OpenNew

Syntax:OpenNew [f i | enane]
Abbreviation:ON

is the same a®pen, but loads the file specified by tH#enamestring into a new document. See Sec-
tion 4.2.1 [Open], page 26.

4.2.3 Save

Syntax:Save
Abbreviation:S

saves the current document using its default file name.

If the current document is unnamed, the file requester wiinognd you will be prompted to select
a file. (You can inhibit the file requester opening by usingNio€ileReq command; see Section 4.9.7
[NoFileReq], page 40.)

If you escape from the file requester, you can input the fileemamthe command line.

4.2.4 SaveAs

Syntax:SaveAs [fi | enane]
Abbreviation:SA

saves the current document using the specified string adehmafine.

If the optional filename argument is not specified, the file requester will open and wdube
prompted to select a file. (You can inhibit the file requesparing by using théloFileReq command;
see Section 4.9.7 [NoFileReq], page 40.)

If you escape from the file requester, you can enter the fileenamthe input line, the default being
the current document name, if available.

Chapter 4: Commands

4.3 Document Commands

These commands allow manipulation of the circular list afutaents ime.

4.3.1 Quit

Syntax:Quit
Abbreviation:Q

closes all documents and exits. If any documents are mogjf@dhave to confirm the action.

4.3.2 Exit

Syntax:Exit
Abbreviation: X

saves all modified documents, closes them and exits. If anyrdents cannot be saved, the action is
suspended and an error message is issued.

4.3.3 NewDoc

Syntax:NewDoc
Abbreviation:N

creates a new, empty, unnamed document that becomes teatadocument. The position of the docu-
ment in the document list is just after the current docum&he preferences of the new document are a
copy of the preferences of the current document.

4.3.4 Clear

Syntax:Clear
Abbreviation:CL

destroys the contents of the current document and of its baffer. Moreover, the document becomes
unnamed. If your current document is marked as modified, yve ko confirm the action.

4.3.5 CloseDoc

Syntax:CloseDoc
Abbreviation:CD

closes the current document. The document is removed fr@mlist and, if it is the only existing
documentnpe exits. If the document was modified since it was last saved yave to confirm the action.

4.3.6 NextDoc

Syntax:NextDoc
Abbreviation:ND

sets as current document the next document in the docursent li

4.3.7 PrevDoc

Syntax:PrevDoc
Abbreviation:PD

sets as current document the previous document in the dattuiste

4.3.8 SelectDoc

Syntax:SelectDoc
Abbreviation:SD

displays a requester containing the names of all the doctsntememory. You select whichever docu-
ment you want to become the current document.

ne’s manual

If you escape from the requester the requester goes awayoarat® returned to your original current
document.

SelectDoc is especially useful if you have a large number of documepé&ndsay, more than 10).
OtherwiseNextDoc andPrevDoc should be enough. See Section 4.3.6 [NextDoc], page 27, enxd S
tion 4.3.7 [PrevDoc], page 27.

4.4 Clip Commands

These commands control the clipping systemcli is a snippet of text separate from any document,
which you can save to a file or insert into a document. You céatstext in a document and copy it to
a clip, optionally deleting it from your text. You can als@tbtext directly from a file into a clime can
have any number of clips, which are distinguished by an ertdgost clip commands act on the current
clip, which can be selected withlipNumber . Clips can be copied and pasted in two ways—normally
(as lines of text) or vertically (as a rectangular block cduccters).

Note that by using th&hrough command you can automatically pass a (possibly verticakof
text through any filter (such asrt underun* x).

4.4.1 Mark

Syntax:Mark [0]1]
Abbreviation:M

sets the mark at the current position or cancels the previmrk. The mark and cursor together define
the range of text over which clip€(t, Copy, Erase) and left and right shifts operate .

If you invoke Mark with no arguments, it will set the mark. If you specify 0 or hetmark will be
canceled or set to the current position, respectively. AtaBp/ appears on the status bar, if the mark is
active.

4.4.2 MarkVert

Syntax:MarkVert [0|1]
Abbreviation:MV

is the same aBlark, but the region manipulated by the cut/paste commands igetttangle having as

vertices the cursor and the mark. If you invakerkvert with no arguments, it will set the mark. If you
specify 0 or 1, the mark will be canceled or set to the curresitfpn, respectively. Moreover, a capital
‘V', rather than a capitaM, will appear on the status bar.

For example, if you have the following text:

aaaBbbccc
aaabbbccc
aaabbbCcc

and you set a vertical mark &' ‘then move the cursor taC, you can cut or copy all of theB's.

If you have made a vertical cut or copy, it's very likely youllwvant to usePasteVert rather than
the usuabaste to reinsert the text in a rectangle. See Section 4.4.6 [Fadjepage 29.

4.4.3 Copy

Syntax:Copy [n]
Abbreviation:C

copies the contents of the characters lying between theicarsl the mark into the clip specified by the
optional numeric argument, the default clip being the aureéip, which can be set with th&lipNumber
command; see Section 4.4.11 [ClipNumber], page 30. If theeatimark was vertical, the rectangle of
characters defined by the cursor and the mark is copied thstea

Chapter 4: Commands

4.4.4 Cut

Syntax:Cut[n]
Abbreviation:CuU

acts just likeCopy, but also deletes the block being copied.

445 Paste

Syntax:Paste [n]
Abbreviation:P

pastes the contents of specified clip into the current doatiatehe cursor position. If you don't specify
the clip number, the current clip is used; Specify which ©ipurrent with Section 4.4.11 [ClipNumber],
page 30.

4.4.6 PasteVert

Syntax:PasteVert[n]
Abbreviation:PVv

vertically pastes the contents of the specified clip, thaulebeing the current clip. Each line of the clip
is inserted on consecutive lines at the horizontal curssitipo.

4.4.7 Erase

Syntax:Erase
Abbreviation:E

acts likeCut, but the block is just deleted and not copied into any clip.

4.4.8 Shift

Syntax:Shift [<|>][n][t|s]]
Abbreviation:SH

shifts the text on lines between the mark and the cursorreitgbt (‘>’, the default) or left (<) by
adding or removing white space on each line. The adjustniest specified as an unsigned integer

is in units of the current tab sizet() or spaces @’). The default is 1. Adjustments start at the left
edge of a vertical mark, or column 1 otherwise. If the markdsaurrently set, only the current line is
affected.

shift will insert tab characters only if the documeritsbs flag is set—in which case a*appears
in the status bar— and ti&hiftTabs is also set—in which case the’‘in the status bar will be upper
case. If either of thehiftTabs or Tabs flags are off (and therefore the’‘in the status bar is lower
case or missing, respectivelghift will only insert spaces.

In the case of left shifts, if any indicated line has insuéfitti leading white space for the requested
adjustment to be made, thehift reports an error and makes no changes.

4.4.9 OpenClip

Syntax:OpenClip[fil enane]
Abbreviation:0C

loads the given file name as the current clip, just as if yowcabpied it from the current document; see
Section 4.4.3 [Copy], page 28.

If the optional filename argument is not specified, the file requester will open and wdlbe
prompted to select a file. (You can inhibit the file requespaEring by using théloFileReq command;
see Section 4.9.7 [NoFileReq], page 40.)

If you escape from the file requester, you can enter the fileemamthe input line.

ne’s manual

4.4.10 SaveClip

Syntax:SaveClip[fil enane]
Abbreviation:SC

saves the current clip on the given file name.

If the optional filename argument is not specified, the file requester will open and wdube
prompted to select a file. (You can inhibit the file requesparong by using théloFileReq command,;
see Section 4.9.7 [NoFileReq], page 40.)

If you escape from the file requester, you can enter the fileenamthe input line.

4.4.11 ClipNumber
Syntax:ClipNumber [n]
Abbreviation:CN

sets the current clip number. This number is use®pynClip andSaveClip , and byCopy, Cut and
Paste if they are called without any argument. Its default valueeso. n is limited only by the integer
size of the machinee is running on.

If the optional argument is not specified, you can enter it on the input line, the defiaeing the
current clip number.

4.4.12 Through

Syntax:Through [conmmand]
Abbreviation: T

asks the shell to executmmmandpiping the current block in the standard input, and replgdi with
the output of the command. This command is most useful wigréi] such asort . Its practical effect
is to pass the block through the specified filter.

Note that by selecting an empty block (or equivalently byihgvthe mark unset) you can use
Through to insert the output of anyN* x command in your file.

If the optional argumentommands not specified, you can enter it on the input line.

4.5 Search Commands

These commands control the search system.offers two complementary searching techniques: a
simple, fast exact matching search (optionally ignoringegaand a very flexible and powerful, but
slower, regular expression search based on the @yek library (again, optionally case insensitive).

4.5.1 Find

Syntax:Find [pattern]
Abbreviation:F

searches for the given pattern. The cursor is positioneti@first occurrence of the pattern, or an error
message is given. The direction and the case sensitivityeae¢arch are established by the value of the
back search and case sensitive search flags. See SectfSéarchBack], page 32, and Section 4.5.10
[CaseSearch], page 32.

If the optional argumenpatternis not specified, you can enter it on the input line, the defagiing
the last pattern used.

4.5.2 FindRegEXxp

Syntax:FindRegExp [pattern]
Abbreviation:FX

searches the current document for the given extended regxpaession (see Section 3.8 [Regular Ex-
pressions], page 20) . The cursor is positioned on the fiisggstnatching the expression. The direction

Chapter 4: Commands

and the kind of search are established by the value of thedwrkh and case sensitive search flags. See
Section 4.5.9 [SearchBack], page 32, and Section 4.5.10 8&aseh], page 32.

If the optional argumenpatternis not specified, you can enter it on the input line, the defaging
the last pattern used.

4.5.3 Replace
Syntax:Replace [string]
Abbreviation:R

moves to the first match of the most recent find string or regespression and prompts you for which
action to perform. You can choose among:

e replacing the string found with the given string and moviaghte next match fes”);
e moving to the next matchfo');
e replacing the string found with the given string, and stoghe search (ast ");
e stopping the search immediatel(it ');
e replacingall occurrences of the find string with the given stringli(**);
e reversing the search directiorBéickward ' or ‘ Forward ’); this choice will also modify the value
of the back search flag. See Section 4.5.9 [SearchBack], [Zage 3
Replace is mainly useful for interactive editinqReplaceOnce , ReplaceAll andRepeatLast are
more suited to macros.

If no find string was ever specified, you can enter it on thetiipe. If the optional argumersgtring
is not specified, you can enter it on the input line, the deéfaging the last string used. When the last
search was a regular expression search, there are somal $patires you can use in the replace string
(see Section 3.8 [Regular Expressions], page 20) . See 8dcE® [FindRegEXxp], page 30.

Note that normally a search starts just one character dféecirsor. However, wheReplace is
invoked, the search starts at the characteryasierthe cursor, so that you can saf€iyd a pattern and
Replace it without having to move back.

Warning: when recording a macro with Section 4.6.1 [Record], pagei#3etis no trace in the macro of
your interaction witte during the replacement process. When the macro is playedyiibagain have
to choose which actions to perform. If you want to apply awttioreplacement of strings for a certain
number of times, you should look at Section 4.5.4 [Replacemage 31, Section 4.5.5 [ReplaceAll],
page 31, and Section 4.5.6 [RepeatLast], page 32.

4.5.4 ReplaceOnce
Syntax:ReplaceOnce [string]
Abbreviation:R1

acts just likeReplace , but without any interaction with you (unless there is no fatdng). The first
string matched by the last search pattern, if it exists,ptaeed by the given replacement string.

If the optional argumenstring is not specified, you can enter it on the input line, the deéflaging
the last string used.

4.5.5 ReplaceAll
Syntax:ReplaceAll[string]
Abbreviation:RA
is similar toReplaceOnce , but replacesill occurrences of the last search pattern with the given replac
ment string.

If the optional argumenstring is not specified, you can enter it on the input line, the déflaging
the last string used.

Note thatUndo will restoreall the occurrences of the search pattern replaceddpaceAll . See
Section 4.7.1 [Undo], page 35.

ne’s manual

4.5.6 RepeatLast

Syntax:RepeatLast[tines]
Abbreviation:RL

repeats for the given number of times the last find or replgegadion (with replace we mean here a
single replace, even if the laReplace operation ended with a global substitution).

RepeatLast is especially useful for researching a given number of tiroeseplacing something a
given number of times. The standard technique for accohiplisthis is:
1. Find (or FindRegExp) the string you are interested in;
2. if you want to repeat a replace operati®eplaceOnce with the replacement string you are inter-
ested in;

3. now issue &epeatLast n-1 command, whera is the number of occurrences you wanted to skip
over, or replace.

The important thing about this sequence of actions is thaillitvork this way even in a macro. The
Replace command cannot be used in a macro unless you really wantdoaattwithne during the
macro execution. Avoiding interaction during macros isghenary reason the commanBsplaceAll
andReplaceOnce are provided.

4.5.7 MatchBracket

Syntax:MatchBracket
Abbreviation:MB

moves the cursor to the bracket associated with the bralketursor is on. If the cursor is not on a
bracket, or there is no bracket associated with the curnest @an error message is issued. Recognized
bracketsare{} ’,*() ’, ‘[] *and ‘<>’. See Section 4.5.8 [AutoMatchBracket], page 32.

4.5.8 AutoMatchBracket

Syntax: AutoMatchBracket [0..15]
Abbreviation:AMB

sets the auto match bracket mode. When the cursor is on anigedgpracket {} ', “() ', ‘[] 'or ‘<>")
and the associated matching bracket is on the screen, thetiimgbracket will be indicated according
to the mode. The mode is either zero for no bracket matchintheosum of 1 (altered foreground and
background brightness), 2 (inverse), 4 (bold), and 8 (Umagr If no mode is specifiedche prompts your
for one. The default mode is 1. See Section 4.5.7 [MatchBrjgiage 32.

45.9 SearchBack

Syntax:SearchBack [0|1]
Abbreviation:SB

sets the back search flag. When this flag is true, every seangplacement command is performed
backwards.

If you invoke SearchBack with no arguments, it will toggle the flag. If you specify 0O grthe flag
will be set to false or true, respectively. A lower casewill appear on the status bar if the flag is true.

Note that this flag also can be set through interactions WweéRéplace command. See Section 4.5.3
[Replace], page 31.

4510 CaseSearch

Syntax:CaseSearch [0[1]
Abbreviation:CS

sets the case sensitivity flag. When this flag is true, theekeammands distinguish between the upper
and lower case letters. By default the flag is false.

Chapter 4: Commands

If you invoke CaseSearch with no arguments, it will toggle the flag. If you specify 0 grthe flag
will be set to false or true, respectively. A lower casewill appear on the status bar if the flag is true.

4.5.11 AutoComplete

Syntax:AutoComplete [prefi x]
Abbreviation:AC

attempts to extend therefix using matching words from your open documents, and indegtextended
text into your document. If thprefix can be extended unambiguously, the matching text is imrteddia
inserted into your document. Otherwise, displays a selection of all words in open documents that
match prefix, and inserts the word you select into the current documenticiNtag words from the
current document display normally; those which only exisbiher open documents are bold and with
a trailing asterisk. If norefix is given on the command line, or futoComplete is selected from
theExtras menu or using a keyboard shortcut, the word characters tortimediate left of the cursor
in the current document are used as firefix Note that if no word characters are to the left of the
cursor, or theprefix given on the command line is an empty strirtgy), then all words in all your
open documents are displayed. Prefix matches may be castveemsnot depending on the current
document'sCaseSearch flag state. See Section 4.5.10 [CaseSearch], page 32.

4.6 Macros Commands

Macros are lists of commands. Any series of operations thettdhe performed frequently is a good
candidate for being a macro.

Macros can be written manually: they are just ASCII files, eammmand occupying a line (lines
starting with #' are considered comments; lines starting with other ndradbetical characters are
presently ignored). But the real power of macros is that theeydzorded during the normal usage of
ne. When the recording terminates, the operations that hage rorded can be saved for later use.
Note that each document has a current macro (the last maairbah been opened or recorded).

4.6.1 Record

Syntax:Record [0]1]

Abbreviation:REC

sets the recording state flag. When this flag becomes teustarts recording your actions in a new
macro. When it becomes false, the macro recording is sto@peithe macro can be played or saved via
Section 4.6.2 [Play], page 33, or Section 4.6.5 [SaveMapaije 34.

If you call invokeRecord with no arguments, it will toggle the flag. If you specify O arthe flag
will be set to false or true, respectively. An upper caeavill appear on the status bar if the flag is true.

The reason for providing a flag instead of an explicit starp'secording command pair is that this
way it is possible to bind both starting and stopping macmiréing to a single key while still being
able to specify “absolute” menu items (by usiRgcord 0 andRecord 1). For instance, the default key
binding for CONTROL- T is simplyRecord , which means that this shortcut can be used both for imtati
and for terminating a macro recording.

4.6.2 Play

Syntax:Play [ti nmes]

Abbreviation:PL

plays the current macro for the given number of times. If theomal argumentimesis not specified,
you can enter it on the input line.

A (possibly iterated) macro execution terminates as sodtsatream of instructions is exhausted,
or one of its commands returns an error. This means thath&amce, you can perform some complex
operation on all the lines containing a certain pattern loprging a macro that searches for the pattern
and performs the operation, and then playing it a prepassérdnuge number of times.

ne’s manual

Execution of a macro can be interrupted@NTROL- \ .

4.6.3 Macro

Syntax:Macro [fi | enane]
Abbreviation:MA

executes the given file name as a macro.

If the optionalfilenameargument is not specified, the file requester is opened, amdrgoprompted
to select a file. (You can inhibit the file requester openingubing theNoFileReqg command; see
Section 4.9.7 [NoFileReq], page 40.)

If you escape from the file requester, you can input the filesmmamthe command line.

Note that macros whose names do not conflict with a commanteaalled without usingylacro .
Wheneveme is required to perform a command it cannot find in its intetiadles, it will look for a
macro by that name in the current directory. If this searslo #ils,ne looks in “/.ne ' and finally
in ne’s global directory (defined whene was built, or in a place specified by yoNE_GLOBAL_DIR
environment variable) for a macro file by that name.

Warning: the first time a macro is executed it is cached into a hash tatilés kepforeverin memory
unless theJnloadMacros command is issued; see Section 4.6.6 [UnloadMacros], pagd 13®& next
time a macro with the same file name is invoked, the cachetlstarched for it before accessing the
file using a case insensitive string comparison. That isouf gall“/foobar/macro , a subsequent call
for /usr/MACRO or even justMaCrOwill use the cached version Gffoobar/macro . Note that the
cache table is global toe and not specific to any single document. This greatly impscféiciency
when macros are used repeatedly.

4.6.4 OpenMacro

Syntax:OpenMacro [fi | enane]
Abbreviation:OM

loads the given file name as the current macro just as ifRetord ed it; see Section 4.6.1 [Record],
page 33.

If the optionalfilenameargument is not specified, the file requester is opened, amdrgpprompted
to select a file. (You can inhibit the file requester openingubing theNoFileReq command; see
Section 4.9.7 [NoFileReq], page 40.)

If you escape from the file requester, you can input the fileemamthe command line.

4.6.5 SaveMacro

Syntax:SaveMacro [fil enane]
Abbreviation:SM

saves the current macro in a file with the given name.

If the optionalfilenameargument is not specified, the file requester is opened, andrgprompted
to select a file. (You can inhibit the file requester openingubing theNoFileReqg command; see
Section 4.9.7 [NoFileReq], page 40.)

If you escape from the file requester, you can input the filesmamthe command line.

SaveMacro is of course most useful for saving macros you just recorddek macros can then be
loaded as normal text files for further editing, if necesshigte thatSaveMacro convertsnsertChar
commands into a possibly smaller numbeiraiertString commands. This makes macros easier to
read and edit. See Section 4.11.1 [InsertChar], page 50, eatib8 4.11.2 [InsertString], page 50.

Chapter 4: Commands

4.6.6 UnloadMacros

Syntax:UnloadMacros
Abbreviation:UM

frees the macro cache list. After this command,Naero command will be forced to search for the file
containing the macros it has to play.

UnloadMacros is especially useful if you are experimenting with a macrarmbto some keystroke,
and you are interactively modifying it and playing itinloadMacros forcesne to look for the newer
version available.

4.7 Undo Commands

The following commands control the undo system.

4.7.1 Undo

Syntax:Undo [n]
Abbreviation:U

undoes the last actions. Ifn is not specified, it is assumed to be one. After you undo a numbe
actions, you caRedo all or some of them; see Section 4.7.2 [Redo], page 35. Howiyeu take any
new actions after havingndone some, you can no longeedo thoseUndone actions. See Section 4.7.2
[Redo], page 35.

4.7.2 Redo

Syntax:Redo [n]
Abbreviation:RE
redoes the last actions undone byndo (as long as you don't take any actions that change the text

between thando andRedo commands). Ifn is not specified, it is assumed to be one. You can only
Redo actions that have beaimdone. See Section 4.7.1 [Undo], page 35.

4.7.3 UndelLine

Syntax:UndelLine [n]
Abbreviation:UL

inserts at the cursor position fartimes the last non-empty line that was deleted withDkiteLine
command. Ifn is not specified, it is assumed to be one.

UndelLine is most useful in that it allows a very fast way of moving omelaround. Just delete it,
and undelete it somewhere else. It is also an easy way tcadpla line without getting involved with
clips.

Note thatUndelLine works independently of the status of the undo flag. See Sedid.4
[DoUndo], page 35.

4.7.4 DoUndo

Syntax:DoUndo [0]1]

Abbreviation:DU

sets the flag that enables or disables the undo system. Whenryahe undo system off, all the recorded
actions are discarded, and the undo buffers are reset.

If you invoke DoUndo with no arguments, it will toggle the flag. If you specify 0 qrtthe flag will be
set to false or true, respectively. A lower casewill appear on the status bar if the flag is true. (The
will be upper case if the flag is true and th®micUndo level is non-zero.)

The usefulness of this option relies in the fact that the usdtem is a major memory eater. If you
plan to do massive editing (say, cutting and pasting megabyft text) it is a good idea to disable the

ne’s manual

undo system, both for improving (doubling) performance fordusing less (half) memory. Except for
this, on a virtual memory system we see no reason to not keeprto flag always true, and this is
indeed the default.

4.7.5 AtomicUndo

Syntax: AtomicUndo [0]+]-]

Abbreviation:AU

increases, decreases, sets or clearatheicUndo level. The normal levelis zero. All current document
changes made while tiigomicUndo level is above zero are treated as a single change byrttie and
Redo commands. If no parameter is given, a level of 0 is set to leretlse the current non-zero level
is decremented. If O is given, the level is reset to zero. rRaters of +’ and ‘- * respectively increment
and decrement the level, which in no case can be negativee IEvel is above zero, thEoUndo flag in
the status bar, which is normally a lower-cage becomes upper cas¥':

Two other actions will reset thatomicUndo level to zero: invoking thesndo command, and dis-
abling the undo system with tilmUndo command. You cannot set a non-zétomicUndo level unless
the undo system is enabled.

Note: macros that you wish to undo and redo atomically—as.if they were single commands—
should begin witlAtomicUndo + and end withAtomicUndo - so that they can call and/or be called by
other macros.

4.8 Formatting Commands

The following commands allow simple formatting operatiomsthe text. Note that fare a paragraph is
delimited by an empty line.

4.8.1 Center

Syntax:Center [n]
Abbreviation:CE

centersn lines from the cursor position onwards. rfis not specified, it is assumed to be one. The
lines are centered with spaces, relatively to the value @frigfht margin as set by thRightMargin
command. See Section 4.8.6 [RightMargin], page 37.

4.8.2 Paragraph

Syntax:Paragraph [n]

Abbreviation:PA

reformatsn paragraphs from the cursor position onwards.nlis not specified, it is assumed to be
one. The paragraph are formatted relatively to the valubefight margin as set by thi@ghtMargin
command. See Section 4.8.6 [RightMargin], page 37.

ne’s notion of a paragraph includes the current non-blank(iegardless of its leading white space)
and all subsequent non-blank lines that have identicaldtth @ther's—not to the first line’s) leading
white space. Therefore your paragraphs can have variotubrf@dsndentations and left margins.

After the Paragraph command completes, your cursor will be positioned on thé fies-blank
character after the last reformatted paragraph (or, iEtleemo such character, at the end of the document).

If you think paragraphing should insert “smart” spacesrafitd stops and colons, and do other
“smart” things such as justification, you should considengis text formatter. gX is usually the best
choice.

4.8.3 ToUpper

Syntax:ToUpper [n]
Abbreviation: TU

Chapter 4: Commands

shifts to upper case the letters from the cursor positioroupé end of a word, and moves to the first
letter of next word fom times.

The description of the command may seem a little bit cryplithat is really happening is that there
are situations where you only want to upper case the lastopartvord. In this case, you just have to
position the cursor in the first character you want to uppeecand us@oUpper with no argument.

If you apply ToUpper on the first character of a word, it will just upper caswords.

4.8.4 ToLower

Syntax:ToLower [n]
Abbreviation:TL

acts exactly likeroupper , but lowers the case. See Section 4.8.3 [ToUpper], page 36.

4.8.5 Capitalize
Syntax:Capitalize [n]
Abbreviation:CA

acts exactly likeToUpper , but capitalizes, that is, makes the first letter upper casketlae other ones
lower case. See Section 4.8.3 [ToUpper], page 36.

4.8.6 RightMargin
Syntax:RightMargin[n]
Abbreviation:RM

sets the right margin for all formatting operations, anditardwrap. See Section 4.8.7 [WordWrap],
page 37.

If the optional argument is not specified, you can enter it on the input line, the defaeing the
current value of the right margin.

A value of zero fom will force ne to use (what it thinks it is) the current screen width as rightgin.

4.8.7 WordWrap

Syntax:WordWrap [0|1]
Abbreviation:Ww

sets the word wrap flag. When this flag is true,will automatically break lines of text longer than the
current right margin while you type them. See Section 4.Bi§titMargin], page 37.

If you invoke WordWrap with no arguments, it will toggle the flag. If you specify 0 qrtlhe flag will
be set to false or true, respectively. A lower cagenill appear on the status bar if the flag is true.

4.8.8 Autolndent

Syntax:Autolndent [0]1]
Abbreviation:Al

sets the auto indent flag. When this flag is tnue will automatically insertraBs and spaces on a new
line (created by amsertLine ~ command, or by automatic word wrapping) in such a way to cepd
the initial spaces of the previous line. Most useful for intitggnprograms.

If you invoke Autoindent with no arguments, it will toggle the flag. If you specify O grthe flag
will be set to false or true, respectively. A lower casewill appear on the status bar if the flag is true.

Autoindent features a nice interaction withhdo. Whenever a new line is created, the insertion of
spaces is recorded as a separate action in the undo bufteréspect to the line creation). If you are not
satisfied with the indentation, just give thlado command and the indentation will disappear (but the
new line will remain in place, since its creation has beeonméed as a separate action). See Section 4.7.1
[Undo], page 35.

ne’s manual

4.9 Preferences Commands

These commands allow you to set your preferences, thativglue of a series of flags that modify the
behaviour ofne. (Some of the flag commands, like the command for the indegt 8papear in other
sections.) The status of the flags can be saved and restteedither by writing them out to a file (saved
as a macro that suitably sets the flags) or by pushing themeofpeferences stack”. The back search
and the read only flags are not saved, because they do noseepeepreference, but rather a temporary
state. The escape time and the turbo parameter are global taimd are not saved. However, you can
add manually to a preferences file any preferences commant ésEscapeTime or Turbo); usually,
this will be done to the default preferences filen'e/.default#ap ’

Note that there is an automatic preferences system, whitdmeagically loads a preferences file
related to the extension of the file name. Automatic prefegeriiles are kept in yout/:ne ’ directory.
They are named as an extension postfixed witip'. Each time you open a file whose name has an
extension for which there is an automatic preferences fileJdtter is executed. If you want to inhibit
this process, you can clear the automatic preferences ftegS8&ction 4.9.2 [AutoPrefs], page 38.

4.9.1 Flags

Syntax:Flags

Abbreviation:FLAG

displays a list of all the status flags for ne and their assediaommands. It is not recorded when
recording a macro.

FLAG COMMAND ABBR DESCRIPTION
i Insert I inserts new characters (vs. replacing)
a Autolndent Al aligns cursor under previous line after <Ret urn>
b SearchBack SB searches search backward rather than forwar d
¢ CaseSearch CS searches are case sensitive
w WordWrap WW breaks long lines as you type
f FreeForm FF allows cursor to move beyond the end of lines
p AutoPrefs AP use automatic preferences based on file exten sion
v VerboseMacros VM record macros using use long command name S
u DoUndo DU record edits for later undoing
r ReadOnly RO changes are not allowed
t Tabs TAB TAB key inserts TABs instead of spaces
T ShiftTabs ST Shift may insert TABs
B Binary B affects file loading/saving
M Mark M mark set for line-oriented block operations
\% MarkVert MV like mark, but block is rectangle
R Record REC actions are being recorded in a macro
P PreserveCR PCR affects how <CR> chars are loaded from files
C CRLF CRLF use CR/LF as line terminator
* Modified MOD document has been modified since last saved
@ UTF8IO U8IO 1/O (keyboard and terminal) are UTF-8 encoded
A/8/U UTF8 U8 the document encoding (ASCII, 8-bit or UTF-8)

The RequestOrder andAutoMatchBracket flags’ states are not indicated on the status bar. See
Section 4.9.8 [RequestOrder], page 40 and Section 4.5.®&MaiichBracket], page 32 respectively.

4.9.2 AutoPrefs

Syntax:AutoPrefs [0[1]
Abbreviation:AP

sets the automatic preferences flag. If this flag is true, &amhanOpen command is executed and a
file is loaded ne will look for an automatic preferences file in yout.he ’directory. The preferences

Chapter 4: Commands

file name is given by the extension of the file loaded, postfixigd ‘#ap’. Thus, for instance, C sources
have an associated#ap ' file. See Section 3.9 [Automatic Preferences], page 23.

If you invoke AutoPrefs with no arguments, it will toggle the flag. If you specify O arthe flag
will be set to false or true, respectively. A lower cagewill appear on the status bar if the flag is true.

4.9.3 Binary

Syntax:Binary [0|1]

Abbreviation:B

sets the binary flag. When this flag is true, loading and saaidgcument is performed in a different
way. On loading, only nulls are considered newlines; onrggviulls are saved instead of newlines. This
allows you to edit a binary file, fix some text in it, and saveithout modifying anything else. Normally,
line feeds, carriage returns and nulls are considered negyliso that what you load will have all nulls
and carriage returns substituted by newlines when saved.

Note that since usually binary files contain a great numbeué$, and every null will be considered
a line terminator, the memory necessary for loading a bifilgycan be several times bigger than the
length of the file itself. Thus, binary editing withive should be considered not a normal activity, but
rather an exceptional one.

If you invokeBinary with no arguments, it will toggle the flag. If you specify 0 qrtthe flag will be
set to false or true, respectively. An upper caseanill appear on the status bar if the flag is true.

4.9.4 Insert

Syntax:Insert [0[1]

Abbreviation:|

sets the insert flag. If this flag is true, the text you type geited, otherwise it overwrites the existing
characters. This also governs the behaviour ofribetChar andinsertString commands.

If you invokelnsert with no arguments, it will toggle the flag. If you specify 0 qrtthe flag will be
set to false or true, respectively. A lower casewill appear on the status bar if the flag is true.

4.9.5 FastGUI

Syntax:FastGUI [0[1]
Abbreviation:FG

sets the fast graphical user interface flag. When this flagésrie tries to print as little as possible while
displaying menus and the status bar. In particular, memsitere highlighted by the cursor only, the
status bar is not highlighted (which allows printing it wfdwer characters) and the hexadecimal code is
not displayed. This option is only (but very) useful if yorarsingne through a slow connection.

If you invoke FastGUI with no arguments, it will toggle the flag. If you specify 0 qrthe flag will
be set to false or true, respectively.

TheFastGUI setting is saved in your/.ne/.default#ap ' file when you use th&aveDefPrefs
command or theSave Def Prefs ’ menu. It is hot saved by th®aveAutoPrefs command.

4.9.6 FreeForm

Syntax:FreeForm [0|1]
Abbreviation:FF
sets the free form flag. When this flag is true, you can move thircursor anywhere on the screen, even
where there is no text present (however, you cannot movedribe space expansion of @ character).

If you invoke FreeForm with no arguments, it will toggle the flag. If you specify 0 qrthe flag will
be set to false or true, respectively. A lower cdsenill appear on the status bar if the flag is true.

The issue free-form-versus-non-free-form is a major relig war that has engaged users from day
one. The due of the implementor is to allow both choices, angkt as default the correct one (in his
humble opinion). In this case, non-free-form.

ne’s manual

4.9.7 NoFileReq
Syntax:NoFileReq [0]1]
Abbreviation:NFR

sets the file requester flag. When this flag is true, the fileastgu is never opened, under any circum-
stances.

If you invoke NoFileReq with no arguments, it will toggle the flag. If you specify O arthe flag
will be set to false or true, respectively.

4.9.8 RequestOrder
Syntax:RequestOrder [0]1]
Abbreviation:RQO

sets the request order flag. When this flag is true, the regudisplays entries in column order. Other-
wise entries are displayed by rows.

If you invoke RequestOrder with no arguments, it will toggle the flag. If you specify O grthe
flag will be set to false or true, respectively.

The RequestOrder setting is saved in your/.ne/.default#ap ' file when you use the
SaveDefPrefs command or theSave Def Prefs ' menu. It is not saved by th8aveAutoPrefs
command.

4.9.9 StatusBar

Syntax:StatusBar [0]1]
Abbreviation:ST

sets the status bar flag. When this flag is true, the statuslzhsplayed at the bottom of the screen.
There are only two reasons to turn off the status bar we arecanfa

¢ if you are usingne through a slow connection, updating the line/column indicaan really slow
down editing;

e scrolling caused by cursor movement on terminals that dahotv to set a scrolling region can
produce annoying flashes at the bottom of the screen.

If you invoke StatusBar with no arguments, it will toggle the flag. If you specify O arthe flag
will be set to false or true, respectively.

The StatusBar setting is saved in your™/:ne/.default#ap ' file when you use the
SaveDefPrefs command or theSave Def Prefs ' menu. It is not saved by th8aveAutoPrefs
command.

4.9.10 HexCode

Syntax:HexCode [0]1]
Abbreviation:HC

sets the hex code flag. When this flag is true, the hexadecivdal af the character currently under the
cursor is displayed on the status line.

4.9.11 ReadOnly

Syntax:ReadOnly [0]1]
Abbreviation:RO

sets the read only flag. When this flag is true, no editing capefrmed on the document (any such
attempt produces an error message). This flag is automugtietl whenever you open a file that you
cannot write to. See Section 4.2.1 [Open], page 26.

If you invokeReadOnly with no arguments, it will toggle the flag. If you specify O arthe flag will
be set to false or true, respectively. A lower casenill appear on the status bar if the flag is true.

Chapter 4: Commands

4.9.12 EscapeTime

Syntax:EscapeTime [n]
Abbreviation:ET

sets the escape time. The ESCAPE key is recognized as sucim &#eths of second. (see Chapter 7
[Motivations and Design], page 61.) Along slow connectidgnsan happen that the default value of 10
is too low: in this case, escape sequences (e.g., those aifrthve keys) could be erroneously broken into
an escape and some spurious characters. Rising the escapestially solves this problem. Allowed
values range from 0 to 255. Note that you can accelerate togmngion of the ESCAPE key by hitting
it twice in a row.

Note that the escape time is globali®, and it is not saved. However, you can add=anapeTime
command manually to a preferences file.

4.9.13 TabSize

Syntax:TabSize [si ze]
Abbreviation: TS

sets the number of spaces will use when expanding 8B character.

If the optional argumensizeis not specified, you can enter it on the input line, the de¢faeing the
currentTAB size. Allowed values are strictly between 0 and half the wiftthe screen.

4.9.14 Tabs

Syntax:Tabs [0]|1]
Abbreviation: TAB

sets theTabs flag. When this flag is true, thasertTab command will insert literalTAB characters.
Otherwise it will insert enough spaces to have the same Misfert.

In normal editing, the TAB key invokes the commadsertTab 1". Unlike most others, the TAB
key cannot be mapped to other commands. Thu3dhe flag provides the only customizatioe offers
for the TAB key.

TheTabs flag also affects the action of the BACKSPACE and DELETE keysii@ special circum-
stance. That is, if the normal action of these keys would remehite space, and that white space could
be represented by a tab, then one tab’s worth of space is egindiv all other cases, the BACKSPACE
and DELETE keys perform their normal function.

If you invoke Tabs with no arguments, it will toggle the flag. If you specify 0 arthe flag will be
set to false or true, respectively. A lower casewill appear on the status bar if the flag is true.

4.9.15 ShiftTabs

Syntax:ShiftTabs [0]1]
Abbreviation:SHT

sets theshiftTabs flag. When this flag and theabs flag are both true, left and rigishift commands
may use tab characters to adjust leading white space. Q#eeonly spaces are used. See Section 4.4.8
[Shift], page 29.

4.9.16 Turbo

Syntax:Turbo [st eps]
Abbreviation: TUR

sets the turbo parameter. Iterated actions and globaloeplaill update at mosttepdines of the screen
(or at most twice the number of visible rowssfepsis zero); then, update will be delayed to the end of
the action.

ne’s manual

This feature is most useful when massive operations (sucbpdecing thousands of occurrences of
a pattern) have to be performed. After having updatgslines, ne can proceed at maximum speed,
because no visual update has to be performed.

The value of the turbo parameter has to be adapted to the kitedminal you are using. Very high
values can be good on high-speed terminals, since the tiquéree for the visual updates is very small,
and it is always safer to look at what the editor is really doi®n slow terminals, however, small values
ensure that operations such as paragraph formatting witbke too long.

You have to be careful about setting the turbo parametectiwone keeps track internally of the part
of the screen that needs refresh in a very rough way. This snieat a value of less than, say, 8 will
force it to do a lot of unnecessary refresh.

The default value of this parameter is zero, which meansatifie number of lines of the screen; for
several reasons this does seem to be a good value.

4.9.17 VerboseMacros

Syntax:VerboseMacros [0[1]
Abbreviation:vM

sets the verbose macros flag. When this flag is true, all maenosrated by recording or by automatic
preferences saving will contain full names, instead of shames. This is highly desirable if you are
going to edit the macro manually, but it can slow down commaarding.

If you invoke VerboseMacros with no arguments, it will toggle the flag. If you specify O qrthe
flag will be set to false or true, respectively. A lower cagewill appear on the status bar if the flag is
true.

The only reason to use this flag is when recording a macro tibbevplayed a great number of
times. Automatic preferences files are too short to be am igstln respect to execution timing.

The VerboseMacros setting is saved in your¥.ne/.default#ap ' file when you use the
SaveDefPrefs command or theSave Def Prefs ' menu. It is not saved by th8aveAutoPrefs
command.

4.9.18 PreserveCR

Syntax:PreserveCR [0]1]
Abbreviation:PCR

sets the preserve carriage returns flag. When afile is loatied buffer for which this flag is false, both

CR (carriage return) and NL (new line) characters are treagdthe terminators. If the flag is true, CR
characters do not act as line terminators but are insteagwed in the buffer. This flag has no effect
except when loading a file into a buffer.

If you invoke PreserveCR with no arguments, it will toggle the flag. If you specify 0 qgrthe flag
will be set to false or true, respectively. An upper casavill appear on the status bar if the flag is true.

4.9.19 CRLF

Syntax:CRLF [0]1]

Abbreviation:CRLF

sets the CR/LF flag. When a file is saved from a buffer for which tlaig is true, both a CR (carriage
return) and a NL (new line) character are output as line teaoirs. This flag has no effect except when
saving a file.

This flag is automatically set if you load a file that has atieag CR/LF sequence into it.

If you invoke CRLFwith no arguments, it will toggle the flag. If you specify O arthe flag will be
set to false or true, respectively. An upper caBeavill appear on the status bar if the flag is true.

Chapter 4: Commands

4.9.20 VisualBell

Syntax:VisualBell [0]1]
Abbreviation:vB

sets the visual bell flag. When this flag is true, the termirilfflash (if possible) instead of beeping.

If you invokeVisualBell ~ with no arguments, it will toggle the flag. If you specify 0 qgrthe flag
will be set to false or true, respectively.

4.9.21 PushPrefs

Syntax:PushPrefs [n]
Abbreviation:PUSHP

pushesi copies of the user preferences onto a stack. If not specifigefaults to one. Use thpPrefs
command to pop preferences off the stack and restore thesteBee Section 4.9.22 [PopPrefs], page 43.
Note that the preferences stack is global, not buffer-figecdo you couldPushPrefs one buffer's
preferences, switch buffers, th@opPrefs those preferences, thereby altering the preferences dor th
second buffer. The maximum preferences stack depth is 32.

PushPrefs andPopPrefs are useful in macros that require certain preferences t& ywaperly.
A macro carPushPrefs , change any preferences necessary, do its work,RbpRrefs to restore the
users previous preferences settings.

PushPrefs saves the following values on the preferences stack:

Autoindent DoUndo PreserveCR ShiftTabs WordWrap
AutoPrefs FreeForm ReadOnly Tabs

Binary HexCode RightMargin TabSize

CaseSearch Insert SearchBack UTF8Auto

ClipNumber NoFileReq StatusBar VisualBell

4.9.22 PopPrefs

Syntax:PopPrefs [n]
Abbreviation:POPP

popsn sets of preferences from the preferences stack (where thieyplaced previously lBushPrefs)
and applies those preferences to the current buffer. Se@B8ec9.21 [PushPrefs], page 43. If not
specified,n defaults to one. Note that the preferences stack is globahuffer specific. Therefore you
could PushPrefs one buffer's preferences, switch buffers, thHespPrefs those settings altering the
preferences for the second buffer. The maximum preferestaek depth is 32.

PushPrefs andPopPrefs are useful in macros that require certain preferences t& waperly.
A macro carPushPrefs , change any preferences necessary, do its work,RbpRrefs to restore the
users previous preferences settings.

PopPrefs restores the following values from the preferestack:

Autolndent DoUndo PreserveCR ShiftTabs ~ WordWrap
AutoPrefs FreeForm ReadOnly Tabs

Binary HexCode RightMargin TabSize

CaseSearch Insert SearchBack UTF8Auto

ClipNumber NoFileReq StatusBar VisualBell
4.9.23 LoadPrefs

Syntax:LoadPrefs [fil enane]
Abbreviation:LP
loads the given preference file, and sets the current prefeseaccordingly.

If the optionalfilenameargument is not specified, the file requester is opened, amdrgpoprompted
to select a file. (You can inhibit the file requester openingubing theNoFileReq command; see

ne’s manual

Section 4.9.7 [NoFileReq], page 40.) If you escape from tleeréfjuester, you can input the file name
on the command line.

Note that a preferences file is just a macro containing ontipopnodifiers. You can manually edit
a preferences file for special purposes, such as filteringpetific settings. See Chapter 6 [Hints and
Tricks], page 59.

4.9.24 SavePrefs

Syntax:SavePrefs [fil enane]
Abbreviation:SP

saves the current preferences on the given file.

If the optionalfilenameargument is not specified, the file requester is opened, amdrgoprompted
to select a file. (You can inhibit the file requester openingubing theNoFileReqg command; see
Section 4.9.7 [NoFileReq], page 40.) If you escape from tleeréifjuester, you can input the file name
on the command line.

4.9.25 LoadAutoPrefs

Syntax:LoadAutoPrefs
Abbreviation:LAP

loads the preferences file iff.he ' associated with the current document’s file name extendiahe
current file name has no extension, the default prefereneewaded. See Section 4.9.2 [AutoPrefs],
page 38.

4.9.26 SaveAutoPrefs

Syntax:SaveAutoPrefs
Abbreviation:SAP

saves the current preferences on the file"imé ' associated with the current document’s file name
extension. If the current file name has no extension, an enessage is issued. See Section 4.9.2
[AutoPrefs], page 38.

4.9.27 SaveDefPrefs

Syntax:SaveDefPrefs
Abbreviation:SDP

saves the current preferences on tti@é/.default#ap ' file. This file is always loaded bye at
startup.

4.9.28 Modified
Syntax:Modified [0]1]
Abbreviation:MOD

sets the modified flag. This flag is set automatically whenevbuffer is modified, and is used to
determine which buffers need to be saved wherexits. Normally you would not alter this flag, but
when a buffer is inadvertently modified and you don’t want thanges savedfodified provides a
way to makene consider the buffer unchanged.

If you invokeModified with no arguments, it will toggle the flag. If you specify 0 qrthe flag will
be set to false or true, respectively. An asterisK)(ill appear on the status bar if the flag is true.

4.9.29 Syntax

Syntax:Syntax [nane| *]
Abbreviation:SY

loads the syntax with the given name, and colors the curngfdrtaccordingly.

Chapter 4: Commands

If the optionalnameargument is not specified, you are prompted for one. The cuome, if set, is
suggested as the default. The speg&he* turns off syntax highlighting for the current documenthot
erwise,namemust match a syntax definition either in yoUtrie/syntax " directory or in a directory
named éyntax '’ inside ne’s global directory. Additionallyne has a table mapping common suffixes to
syntax names. If there is no syntax with a given nameeyill try to remap the name using the following
table (the string before the colon is the name of the synteax fil

ada: adb, ads

asm: s

c: c++, cc, cpp, h, h++ hpp, |, lex, y, yacc

cobol: cbl, cob

csh: tesh

diff: patch

fortran: f, for

html: htm

java: js

lisp: el, Isp

mason: mas

ocaml: ml, mli

pascal: p, pas

perl: pl, pm

ps: eps

python: py, sage

rexx: rex

ruby: rb

sh: bash, bash_login, bash_logout, bash_profile, bashrc, ksh,
profile, rc

skill: il

tex: latex, dtx, sty

texinfo: texi, txi

troff: 1

verilog: v, vh, vhd

xml: xsd

4.9.30 UTF8

Syntax:UTF8 [0[1]

Abbreviation:Us

sets the UTF-8 flag. When this flag is true, considers the current buffer as UTF-8 coded. Note that
this flag is set automatically upon file loading (if possihifeyou required automatic detection. See
Section 4.9.31 [UTF8Auto], page 45.

If you invoke UTF8 with no arguments, it will toggle the flag. If you specify O orthe flag will
be set to false or true, respectively. When you try to setftags the buffer will be checked for UTF-8
compliance, and you will get an error message in case ofréilMVhen you try to reset it, the buffer
is set to ASCII or 8-bit, depending on its content. & Will appear on the status bar if the flag is true.
Alternatively, an A’ or an ‘8’ will be displayed to denote whether the buffer is composetiusively
by US-ASCII characters, or also by other 8-bit charactersog@ghencoding is likely to be part of the
ISO-8859 family). Note that each time this command modifies tiuffer encoding, it also resets the
undo buffer.

4.9.31 UTF8Auto

Syntax:UTF8Auto [0]1]
Abbreviation:USA

ne’s manual

sets the UTF-8 automatic-detection flag. When this flag is, tre will try to guess whether a file just
loaded is UTF-8 encoded. Moreover, when a non US-ASCII charaginserted in a pure US-ASCII
buffer, ne will automatically switch to UTF-8. See Sectiaf.30 [UTF8], page 45. The flag is true by
default ifne detects UTF-8 I/O at startup. See Section 4.9.32 [UTF8la@jem6.

If you invoke UTF8Auto with no arguments, it will toggle the flag. If you specify 0 qrtlie flag will
be set to false or true, respectively.

4.9.32 UTF8IO
Syntax:UTF8IO [0]1]
Abbreviation:U8IO

sets the UTF-8 input/output flag. This flag is set automdsiapending on your locale setting, and
is used to determine whether communication with the userb@ard and terminal) should be UTF-8
encoded. Normally you would not alter this flag, but sometime may make the wrong guess (e.g.,
when you are remotely connected).

If you invoke UTF8IO with no arguments, it will toggle the flag. If you specify 0 qrtthe flag will be
set to false or true, respectively. A@'will appear on the status bar if the flag is true.

4.10 Navigation Commands

These commands allow you to move through a document. Bedidestdndard commands that allow
you to move by lines, pagest ceterane has bookmarks that let you mark a position in a file so to move
to the same position later.

4.10.1 Moveleft

Syntax:MoveLeft[n]
Abbreviation:ML

moves the cursor to the left by one charaatdimes. If the optionah argument is not specified, it is
assumed to be one.

4.10.2 MoveRight

Syntax:MoveRight [n]
Abbreviation:MR

moves the cursor to the right by one characteimes. If the optionah argument is not specified, it is
assumed to be one.

4.10.3 LineUp
Syntax:LineUp [n]
Abbreviation:LU

moves the cursor up by one limetimes. If the optionah argument is not specified, it is assumed to be
one.

4.10.4 LineDown

Syntax:LineDown [n]
Abbreviation:LD

moves the cursor down by one limetimes. If the optionah argument is not specified, it is assumed to
be one.

4.10.5 GotoLine

Syntax:GotoLine [|i ne]
Abbreviation:GL

Chapter 4: Commands

moves the cursor to theth line of the file. Ifline is zero or greater than the number of lines in the file,
the cursor is moved to the last line.

If the optional argumentine is not specified, you can enter it on the input line; the defaydut
response is the current line number.

4.10.6 GotoColumn

Syntax:GotoColumn [col unm]

Abbreviation:GC

moves the cursor to theolumrth column of the file.

If the optional argumentine is not specified, you can enter it on the input line; the defamydut
response is the current column number.

4.10.7 GotoMark

Syntax:GotoMark

Abbreviation:GM

moves the cursor to the current mark, if it exists. See Sedtid.1 [Mark], page 28.

GotoMark is mainly useful if you forgot where you started marking. ¢fuywant to record positions
in a file and jump to them later, you may want to use a bookm&#ke. Section 4.10.26 [SetBookmark],
page 49.

4.10.8 PrevPage
Syntax:PrevPage [n]
Abbreviation:PP

moves the cursan pages backward, if the cursor is on the first line of the sgretirerwise moves the
cursor to the first line of the screen, and movegidypages. If the optional argument is not specified,
it is assumed to be one.

4.10.9 NextPage
Syntax:NextPage [n]
Abbreviation:NP

moves the curson pages forward, if the cursor is on the last line of the scre¢ingrwise moves the
cursor to the last line of the screen, and movesHiypages. If the optionat argument is not specified,
it is assumed to be one.

4.10.10 PageUp

Syntax:PageUp [n]

Abbreviation:PUP

pages the screen backwardmgcreens. 1fis not specified, it is assumed to be one.

4.10.11 PageDown

Syntax:PageDown [n]

Abbreviation:PDN

pages the screen forward lyscreens. If is not specified, it is assumed to be one.

4.10.12 PrevWord

Syntax:PrevWord [n]

Abbreviation:PW

moves the cursor to the first character of the previous wotiches. If the optionah argument is not
specified, it is assumed to be one (in which case, if the cissorthe middle of a word the effect is just
to move it to the start of that word).

ne’s manual

4.10.13 NextWord

Syntax:NextWord [n]
Abbreviation:NW

moves the cursor to the next wordtimes. If the optionah argument is not specified, it is assumed to
be one.

4.10.14 MoveEOL

Syntax:MoveEOL
Abbreviation:EOL

moves the cursor to the end of the current liB®(= end of line).

4.10.15 MoveSOL

Syntax:MoveSOL
Abbreviation:SOL

moves the cursor to the start of the current lis® = start of line).

4.10.16 MoveTOS

Syntax:MoveTOS

Abbreviation:TOS

moves the cursor to the top line of the scree@%$= top of screen).

4.10.17 MoveBOS

Syntax:MoveBOS

Abbreviation:BOS

moves the cursor to the lowest line currently visitB®©E= bottom of screen).

4.10.18 MoveEOF

Syntax:MoveEOF

Abbreviation:EOF

moves the cursor to the end of the docum&aK= end of file).

4.10.19 MoveSOF

Syntax:MoveSOF

Abbreviation: SOF

moves the cursor to the start of the docume&a@K= start of file).

4.10.20 MoveEOW

Syntax:MoveEOW

Abbreviation:EOW

moves the cursor one character past the end of the curredt wor

MoveEOWSs extremely useful in macros, because it allows you to capgipely the word the cursor
is on. See Chapter 6 [Hints and Tricks], page 59.

4.10.21 MovelncUp

Syntax:MovelncUp
Abbreviation:MIU

moves the cursor incrementally towards the beginning ofitument. More precisely, if the cursor is
not on the start of the line it lies on, then it is moved to tretsdf that line. Otherwise, if it is on the first
line of the screen, then it is moved to the start of the docunmtherwise, it is moved to the first line of
the screen.

Chapter 4: Commands

4.10.22 MovelncDown

Syntax:MovelncDown
Abbreviation:MID

moves the cursor incrementally towards the end of the dontinvore precisely, if the cursor is not on
the end of the line it lies on, then it is moved to the end of timet. Otherwise, if it is on the last line
of the screen, then it is moved to the end of the documentrwibe, it is moved to the last line of the
screen.

4.10.23 AdjustView

Syntax:AdjustView [T|M|B|L|C|R] [n]

Abbreviation:AV

shifts the view (text visible in the terminal window) hori#ally or vertically without changing the
cursor’s position in the document. View adjustments arestrained by the currertas size and the
length and width of the current document. If called with nguanents T’ is assumed.

‘T’, *M, and ‘B’ cause vertical shifts so that the current line becomesdpgerhiddle, or bottom-most
visible line respectively.

‘L’, ' C, and ‘R cause horizontal shifts, making the current column thededst, center, or right-most
visible positions.

A optional numbem immediately afterT’, ‘B, ‘L’, or ‘R indicate the number or rows or columns
to shift the view toward the top, bottom, left, or right of tvndow.

Horizontal and vertical adjustment specifications may benlioed, so that for example
‘AdjustView TL ' shifts the view so that the current position becomes theléfipmost character on
screen (within the limits of the curremaB size). Likewise, AdjustView B3R5 ' shifts the view three
lines toward the bottom and five columns (exceptiag size) toward the right.

4.10.24 ToggleSEOF

Syntax:ToggleSEOF
Abbreviation: TSEOF

moves the cursor to the start of document, if it is not alretheye; otherwise, moves it to the end of the
document.

This kind of toggling command is very useful in order to gadme keystrokes on systems with very
few keys. See also Section 4.10.25 [ToggleSEOL], page 489idpe4.10.19 [MoveSOF], page 48, and
Section 4.10.18 [MoveEOF], page 48.

4.10.25 ToggleSEOL

Syntax:ToggleSEOL
Abbreviation: TSEOL

moves the cursor to the start of the current line, if it is rietady there; otherwise, moves it to the end
of the current line.

This kind of toggling command is very useful in order to gaam® keystrokes on systems with very
few keys. See also Section 4.10.24 [ToggleSEOF], page 4%i08et.10.15 [MoveSOL], page 48, and
Section 4.10.14 [MoveEOL], page 48.

4.10.26 SetBookmark

Syntax:SetBookmark [n|+ 1| -1]| -]
Abbreviation: SBM

sets a document bookmark to the current cursor positionh Bacument has 10 available bookmarks
designatedd’ to ‘9’, plus the automatic bookmark designated by. ‘ If no option is given, 0’ is

ne’s manual

assumed. Values affrom ‘0’ to ‘' 9’ set thenth bookmark, while+1" and ‘-1 * indicate respectively the
next and previous available unset bookmarks. You can alsithee ' automatic bookmark, but it will
be reset automatically to the current position whenevestaBookmark command is issued.

4.10.27 GotoBookmark

Syntax:GotoBookmark [n|+ 1| -1]| -]
Abbreviation:GBM

moves the cursor to the designated bookmark if that booknsaskt; see Section 4.10.26 [SetBook-
mark], page 49. Each document has 10 available bookmarkgnéésd 0’ to ‘9’, plus the automatic
bookmark designated by " If no option is given, 0’ is assumed. The optons1’ and ‘-1’ indicate
respectively the next and previous set bookmarks, so tpaatedGotoBookmark +1 commands will
cycle through all currently set bookmarks. When successfiel - ' automatic bookmark is set to the
position in the document from which the command was issuetha&GotoBookmark - returns you to
the location from which you last issued a successioloBookmark command. Subsequent repeated
GotoBookmark - commands will toggle you between the two locations.

4.10.28 UnsetBookmark

Syntax:UnsetBookmark [n|+ 1| - 1| - | *]
Abbreviation:UBM

unsets either thath bookmark, the next{1) or previous {1) set bookmarks, the automati¢ pook-
mark, or all ¢) bookmarks, making it as if they had never been set; seedpetti 0.26 [SetBookmark],
page 49. If no option is specified,is assumed to be zero. While you can unset the automatic kertkm
-7, it will be reset automatically to the current position wie¥er aGotoBookmark command is issued.
Each document’s valid bookmark designations are 0 to 9, laad t automatic bookmark.

4.11 Editing Commands

These commands allow modifying a document directly.

4.11.1 InsertChar

Syntax:InsertChar [code]
Abbreviation:IC

inserts a character whoascii code iscodeat the current cursor positiowodecan be either decimal,
hexadecimal if preceded bgx’, or octal if preceded byd'. In any casecodemust be different from 0.
All the currently active preferences options (insert, wardpping, auto indengt ceterd are applied.

If the optional argumentodeis not specified, you can enter it on the input line, the detaeihg the
last inserted character.

Note that inserting a line feed (10) is completely differ&oim inserting a line withinsertLine
InsertChar 10 puts the control chaBONTROL- J in the text at the current cursor position. See Sec-
tion 4.11.8 [InsertLine], page 51.

Note also thatSaveMacro convertsinsertChar commands into a possibly smaller number of
InsertString commands. This makes macros easier to read and edit. SeenSke6t5 [SaveMacro],
page 34.

4.11.2 InsertString
Syntax:InsertString [text]
Abbreviation:1S

insertstext at the current cursor position. If the optional argumient is omitted, you will be prompted
for it on the command line. All the currently active preferen options (insert, word wrapping, auto
indent,et ceterd are applied.

Chapter 4: Commands

Note that SaveMacro converts InsertChar ~ commands into a possibly smaller number of
InsertString commands. This makes macros easier to read and edit. SéenSk6t5 [SaveMacro],
page 34.

4.11.3 InsertTab

Syntax:InsertTab[n]
Abbreviation:IT

inserts eithem literal TAB characters or one or more spaces sufficient to advance thentwursor
position n tab stops depending on tifabs flag. See Section 4.9.14 [Tabs], page 41, Section 4.9.13
[TabSize], page 41.

4.11.4 DeleteChar

Syntax:DeleteChar [n]
Abbreviation:DC

deletesn characters from the text. If the optionalargument is not specified, it is assumed to be one.
Deleting a character when the cursor is just after the laet ch a line will join a line with the following
one; in other words, the carriage return between the twa hiél be deleted. Note that if the cursor is
past the end of the current line, no action will be performed.

4.11.5 DeletePrevWord

Syntax:DeletePrevWord [n]
Abbreviation:DPW

deletes text from the current position to the first charaatéine previous wordh times. If the optionah
argument is not specified, it is assumed to be one (in whioh, deihe cursor is in the middle of a word
the effect is just to delete to the start of that word).

4.11.6 DeleteNextWord

Syntax:DeleteNextWord [n]
Abbreviation:DNW

deletes text from the current position to the next wotimes. If the optionah argument is not specified,
it is assumed to be one.

4.11.7 Backspace

Syntax:Backspace [n]
Abbreviation:BS

acts likeDeleteChar , but moves the cursor to the left before deleting each ckarac

4.11.8 InsertLine

Syntax:InsertLine [n]
Abbreviation:IL

insertsn lines at the current cursor position, breaking the currieet [If the optionaln argument is not
specified, it is assumed to be one.

4.11.9 DeleteLine

Syntax:DeleteLine [n]
Abbreviation:DL

deletesn lines starting from the current cursor position, putting lidist one in the temporary buffer, from
which it can be undeleted. See Section 4.7.3 [UndelLinejep2b. If the optionah argument is not
specified, it is assumed to be one. Note that this action ie imay inverse with respect tasertLine

ne’s manual

4.11.10 DeleteEOL

Syntax:DeleteEOL
Abbreviation:DE

deletes all characters from the current cursor positiohéaend of the line.

DeleteEOL could be easily implemented with a macro, but it is such a comrasic editing feature
that it seemed worth a separate implementation.

4.12 Support Commands

These commands perform miscellaneous useful actions. rticylar, they provide access to the shell
and a way to assign the functionality of ESCAPE to another key.

4.12.1 About

Syntax:About
Abbreviation: About

displays the copyright splash screen and places a simgleniation line containing the version and build
date ofne on the status bar. Press any key to dismiss this screen.

4.12.2 Alert

Syntax:Alert
Abbreviation: AL

beeps or flashes, depending on the value of the visual bell flag

4.12.3 Beep

Syntax:Beep
Abbreviation:BE

beeps. If your terminal cannot beep, it flashes. If it canrasthf] nothing happens (but you have a very
bad terminal).

4.12.4 Exec

Syntax:Exec
Abbreviation:EX

prompts the user on the input line, asking for a command, aadutes it. It is never registered while
recording a macro (though the command you type is).

Exec is mainly useful for key bindings, menu configurations, amchianually programmed macros.

Note that if the command you specify does not appeaeis internal tables, it is considered to be a
macro name. See Section 4.6.3 [Macro], page 34.

4.12.5 Flash

Syntax:Flash
Abbreviation:FL

acts aeep, but interchanging the words “beep” and “flash”. Same contmapply. See Section 4.12.3
[Beep], page 52.

4.12.6 Help

Syntax:Help [nane]

Abbreviation:H

displays some help about the commaraine(both the short and the long versions of the command
names are accepted). If no argument is given, a list of aditiexj commands in long form is displayed,

Chapter 4: Commands

allowing you to choose one. You can browse the help text vaighstandard navigation keys. If you press
RETURN, the command list will be displayed again. If you pre&soF ESCAPE, you will return to
normal editing.

Invocations of thedelp command are never registered while recording macros sgdhiatan safely
access the help system while recording. See Section 4.6¢cbfiepage 33.

4.12.7 NOP

Syntax:NOP
Abbreviation:NOP

does nothing. Mainly useful for inhibiting standard key bimgs.

4.12.8 Refresh

Syntax:Refresh
Abbreviation:REF

refreshes the displayRefresh is very important, and should preferably be bound to@ONTROL- L
sequence, for historical reasons. It can always happemthaisy phone line or a quirk in the terminal
corrupts the display. This command restores it from scratch

Refresh has the side effect of checking to see if your window size hasged, and will modify the
display to take that into account.

4.12.9 Suspend

Syntax:Suspend
Abbreviation:SU

suspendse and returns you to a shell prompt; usually, the shell comnfignid used to resumee.

4.12.10 System

Syntax:System [conmand]
Abbreviation:SYS

asks the shell to executwmmand The terminal is temporarily reset to the state it was in befe’s
activation, anccommandis started. When the execution is finished, control retusme t

If the optional argumentommandis not specified, you can enter it on the input line.

4.12.11 Escape

Syntax:Escape

Abbreviation:ESC

toggles the menus on and off, or escapes from the input lifks dommand is mainly useful for re-
programming the menu activator, and it is never registereitewecording a macro. See Section 4.6.1
[Record], page 33.

4.12.12 KeyCode

Syntax:KeyCode
Abbreviation:KC

prompts you to press a key, and reports on the status linestheddene associates with that key. This
can be useful while configuring your.he/.keys "file. It also reports the input class for that key.
Input class codes are: ALPHA, COMMAND, RETURN, TAB, IGNORE, and INVB.

ne’s manual

Chapter 5: Configuration

5 Configuration

In this chapter we shall see how the menus and the key bindihgs can be completely configured.
Note that the configuration is parsed at startup time, andatdre changed during the execution of the
program. This is a chosen limitation.

5.1 Key Bindings

ne allows you to associate any keystroke with any command. Toraplish this task, you have to
create a (possibly UTf-8) file namedkéys ' in your ‘“/.ne ’directory. You can change the default
name (possibly specifying a complete path) using-tkeys argument (see Section 3.1 [Arguments],
page 11).

The format of the file is very simple: each line starting witlke tKEY sequence of capital characters
is considered the description of a key binding. Each lingistawith ‘SEQ binds a character sequence
to a key. All other lines are considered comments. The foohatkey binding description is

KEY hexcode command

The hexcodevalue is theascii code of the keystroke. (For special keys such as INSERT atifum
keys, you should take a look at the fildefault.keys ' that comes withne’s distribution: it contains
a complete, commented definition wé’s standard bindings that you can modify with a trial-antber
approach.) The easiest way to see the cosleises for a given key is by using the Section 4.12.12
[KeyCode], page 53 command. It prompts you to press a key, riqgarts the code for that key on the
status bar.

You can write just the hexadecimal digits, nothing else seseary (but a prefixin@x’ is tolerated).
For instance,

KEY 1 MoveSOL

binds toCONTROL- A the action of moving to the start of a line, while
KEY 101 LineUp

binds to the “cursor-up” key the action of moving the cursoe tine up.

commandcan be anyle command, includingscape (which allows reconfiguring the menu activa-
tor) andMacro , which allows binding complex sequences of actions to desikgystroke. The binding of
a macro is very fast because on the first call the macro is daoheemory. See Section 4.6.3 [Macro],
page 34.

Note that you cannogver redefine RETURN or ESCAPE. This is a basic issue—however brain
damaged is the current configuration, you will always be abéxploit fully the menus and the command
line.

Besides the “standard” combinations (e@ONTROL- | et t er), it possible to program combinations
based on the META key (a.k.a. ALT). The situation in this caselit more involved, because depending
on the terminal emulator you are using, the effect of the ME@j &an be widely different. For instance,
xterm raises the eighth bit of a character, so, for instance,

KEY 81 MoveSOF

binds CONTROL- META- a to the action of moving to the start of the document. Howegenme-
terminal will emit the character of ASCII code 1 prefixed with ESC inst€ax1b\x01 ”). To handle
this casene provides codes from 180 on feimulated META sequencdsr instance,

KEY 181 MoveSOF

binds the abovementioned sequence to the same action as.defgeneral, the code 180 corresponds

to the sequence ESC followed by the ASCII character of coddote that some of these sequences may
be disabled, if they conflict with existing sequences of yeaminal (for instance, ESC followed bg"

is always disabled because it prefixes several built-in Gayih sequences).

ne’s manual

As a final note, we remark that typil@ETA- a on gnome-terminal ~ will produce an ESC followed
by ‘a’ (“\x1ba). Since it is obviously easier to press just META rather thBTA and CONTROL at
the same time, it is a good idea to associate the same secalsade this combination, using

KEY 1E1 MoveSOF

Moreover, this setting provides the user with a second chace can press ESCAPE followed by a
letter instead of using modifiers.

This is the approach used by defaultrie: this way, CONTROL with META plus a letter should
always work, and META should work sometimes (of course, if's@aure to use always the same kind
of emulator you can bind more features). Again, the bestadook at it's default.keys .

As stated above, each line starting wi8EQ binds a character sequence to a key code. The format
for a ‘SEQ binding is

SEQ "sequence" hexcode

where" sequence is a double-quoted string of characters (which can inclut@ged hexadecimals)
followed by a hexadecimal key code as described abovekey ‘definitions.

You should rarely need this, as properly configured systdmady do this for most keys. How-
ever, some key combinations (CONTROL in conjunction withsoutkeys for example) are usually not
defined. If you know the character sequence your system gtsefor such a combination, you may
use SEQ to bind that sequence to a particular key code if that seqeiésn’t already defined on your
system. For example, CONTROL-“cursor-left” may generategbquenciib[1;5D . The following
lines bind that sequence to the F10 key cade\’, then bind that key code to thélELP command.

SEQ "\x1b[1;5D" 14A
KEY 14A HELP

Sequences are inherently terminal- or terminal emulgieci§ic, so their utility will vary depending
on how many emulators you use. At least they give you the pitgito use keys or key combinations
that aren’t covered byurses .

The key binding file is parsed at startup. If something dodsamuk, ne exits displaying an error
message. If you wamie to skip parsing the key binding file (for instance, to corttbet broken file), just
give ne the--no-config argument. See Section 3.1 [Arguments], page 11.

5.2 Changing Menus

ne allows you to change the contents of its menus. To accomtilisitask, you have to create a file
named ‘menus ' in your home directory, or in“.ne '. You can change the default name (possibly
specifying a complete path) using thewenus argument (see Section 3.1 [Arguments], page 11).

Each line of a menu configuration file not starting with theENUor ‘ ITEM’ keywords is considered
a comment. You should describe the menus as in the followiagele:

MENU "File"

ITEM "Open... “O" Open

ITEM "Close " Close

ITEM "Dolt " Macro Dolt
In other words: a line of this form

MENU title"

will start the definition of a new menu, having the given titieach line of the form
ITEM "text" comrand
will then define a menu item, and associate the given comnmaitd t

Any number of menus can be accommodated, but you shoulddmmiiat many terminals are 80
columns wide. There is also a minor restriction on the itertfeei+ width has to be constant throughout
each menu (but different menus can have different widthsje khat the text of an item, as the name of

Chapter 5: Configuration

a menu, is between quotes. Whatever follows the last quatanisidered the command associated to the
menu.

Warning: the description of key bindings in menu&®’ in the previous example) is very important for
the beginner; there is no relation inside about what you say in the menu and how you configure the
key bindings (see Section 5.1 [Key Bindings], page 55). Rleksnot say things in the menus that are
not true in the key binding file.

The menu configuration file is parsed at startup. If sometimes not workne exits displaying an
error message. If you wane to skip the menu configuration phase (for instance, to cothecbroken
file), just givene the--no-config argument. See Section 3.1 [Arguments], page 11.

ne’s manual

Chapter 6: Hints and Tricks

6 Hints and Tricks

Use F1 or ESCAPE-ESCAPE, not ESCAPE.
Due to the limitations of the techniques used when commtingavith a terminal, it is
not possible to “decide” that the user pressed the ESCAPE deglfout a second after
the actual key press (see Section 4.9.12 [EscapeTime],489gd his means that you will
experience annoying delays when using menus. If you havelnkelf, use ESCAPE-
ESCAPE, or redefine a keystroke assigning the comntiadpe , and you will be able
to use that keystroke instead of ESCAPE. Unfortunately, sBldkbased terminals (most
notably,gnome-terminal) use F1 for their own purposes; in that case, you can assign th
Escape command to another key (see Chapter 5 [Configuration], page 55)

Check for the presence of a META key.

If your system has a standard META or ALT key, there is a goochckahat you have
several other shortcuts. If the built-in META bindings do natrk, you must discover
which is the effect of the META in your terminal emulator. lmdk it is possible in theory
to configure about 150 shortcuts. See Chapter 5 [Configuragpage 55. In any case,
prefixing a key with ESCAPE has the same effect as holding dowiAlEo with the
standard key bindings you can, for instance, advance by wadrdESCAPE followed by
F.

Mac users should turn on “Delete sends CTRL-H" in tfeeminal settings.
If you are a Mac user, you need to check the “Delete sends CTRLgtbdm in the
‘Advanced ' tab of theTerminal application settings.

ne does tilda expansion.
When you have to specify a file name, you can always start withih order to specify
your home directory, or‘user /' to specify the home directory of another user.

It is easy to correct bad colors.
Sometimes, due to different opinions about the best defartdground and background
colors, some of the color choices in a syntax file might be aghable (for instancedim
white ’ on a terminal with a white background). Just copy the gusiytax specification
file to the "/.ne/syntax " directory, and change the color names at the start of the file

Use the tabs ' syntax to distinguisitABs fromSPACEs.
When you're struggling to clean up a mix oABs andsPACEs, temporarily switching to
the ‘tabs ’ syntax may help. The commargyntax tabs makesTAB characters show up
in a different background color fromPACEs. Once you've gotten your white space issues
straightened out, you can switch back to the syntax apmtgpfor your current file type.

ne does interactive filename completion.
When you have to specify a file name as last element of a long,iypu can invoke the
completer using TAB. If you hit it twice in a row, you will enténe file requester, where
you can navigate and escape back to the command line, eittieF&; which will let you
edit again your previous input, or with TAB, which will copy yocurrent selection over
your previous file name. In other words, you can freely alisgrcompletion, editing and
browsing.

Disable the status line for slow connections.
ne tries to emit as few characters as possible when updatingctieen. However, for each
key you type it is likely that the status bar has to be updatéglour connection is very
slow, you can disable the status bar to get a quicker resf{easeSection 4.9.9 [StatusBar],
page 40).

ne’s manual

The ESCAPE delay when activating menus can be avoided.
If you press after ESCAPE any key that does not produce thendeximaracter of an es-
cape sequencee will immediately recognize the ESCAPE key code as such. Siace
alphabetical keys have no effect while browsing throughrttemus, if you're forced to
use ESCAPE as menu activator you can press, for instancgyst after it to speed up
the menu activation (note that*would not work, because it would activate the command
line). Alternatively, you can just type ESCAPE twice in a row.

Use turbo mode for lengthy operations.
Turbo mode (see Section 4.9.16 [Turbo], page 41) allowsopmihg very complex opera-
tions without updating the screen until the operations anegiete. This can be a major plus
if you are editing very long files, or if your terminal is sloW.the default value (0, which
means twice the number of visible rows) does not give you #st besults, experiment
other values.

Regular expressions are powerful, and slow.
Regular expressions must be studied very carefully. If yamdpa lot of time doing editing,
it is definitely reasonable to study even their most esofedtures. Very complex editing
actions can be performed by a single find/replace using theonvention. But remember
always that regular expressions are much slower than a hegaech: in particular, if you
use them on a UTF-8 texte has to transform them into an equivalent (but more complex)
expression that cannot match partially a UTF-8 sequenat ttda expansion makes the
search even slower.

Use the correct movement commands in a macro.
Many boring, repetitive editing actions can be performedmeeze by recording them the
first time. Remember, however, that while recording a compiaxro you should always
use a cursor movement that will apply in a different contExt. instance, if you are copying
a word, you cannot move with cursor keys, because that waadather application of the
macro could be of a different length. Rather, use the nextipne word keys and the
MoveEOWommand, which guarantee a correct behaviour in all sanati

Some preferences can be preserved even with automaticepeéay.
When you save an autoprefs file, the file simply contains a entwat, when executed,
produces the current configuration. However, you could waninstance, to never change
the insert/overwrite state. In this case, just edit the puatis files withne and delete the
line containing the command setting the insert flag. Wherathteprefs are loaded later,
the insert flag will be left untouched. This trick is partiatly useful with theStatusBar
andFastGUI commands.

If some keystrokes do not work, check for system-specifirésat
Sometimes it can happen that a keystroke does not work—sétarice CONTROL- O does
not open a file. This usually is due to the kernel tracking kegtfor its purposes. For in-
stance, along &lnet connection with xon/xoff flow controlCONTROL- S andCONTROL -
Qwould block and release the output instead of saving andmgLit

In these cases, if you do not need the system feature youdsbloeitk how to disable it: for
instance, somesb-like systems feature a delayed suspend signal that is ribeiRroSIx
standard, and thus cannot be disablechby On HP-uUX, the commandtty dsusp “-
would disable the signal, and would let the control sequ@negiously assigned to it to run
up tone.

Chapter 7: Motivations and Design

7 Motivations and Design

In this chapter | will try to outline the rationale behind’s design choices. Moreover, some present,
voluntary limitations of the current implementation wik ldescribed. The intended audience of such a
description is the programmer wanting to hacknefs sources, or the informed user wanting to deepen
his knowledge of the limitations.

The design goal afe was to write an editor that is easy to use at first sight, paeathd completely
configurable. Makingie run on any terminal thati could handle was also a basic issue, because there
is no use getting accustomed to a new tool if you cannot uséénwou really need it. Finally, using
resources sparingly was considered essential.

ne has no concept ahode All shortcuts are defined by a single key, possibly with a ried(such
as CONTROL or META). Modality is in my opinion a Bad Thing unlesshds a very clear visual
feedback. As an example, menus are a form of modality. Aftegreng the menus, the alphabetic keys
and the navigation keys have a different meaning. But the litpdaclearly reflected by a change in the
user interface. The same can be said about the input linaubedt is always preceded by a (possibly
highlighted) prompt ending with a colon.

ne has no sophisticated visual updating system similar tojrfstance, the one afurses . All
updating is done while manipulating the text, and only iftilmo flag is set can some iterated operations
delay the update. (In this case keeps track in a very rough way of the part of the screen thatgdd.)
Moreover, the output is not preempted by additional inputiogrin, so that along a slow connection the
output could not keep up with the input. However, along reaabty fast connections, the responsiveness
of the editor is greatly enhanced by the direct update. Andesive update the screen in parallel with
the internal representation, we can exploit our knowledgeutput a very small number of characters
per modification. As it is typical ime, when such design tradeoffs arise, preference is givengo th
solution that is effective on a good part of the existing g and will be very effective on most future
hardware.

ne uses a particular scheme for handling text. There is a ddirdgd list of line descriptors that
contain pointers to each line of text. The lines themselvesapt in a list of pools, which is expanded
and reduced dynamically. The interesting thing is that farthepoolne keeps track just of the first and
of the last character used. A character is free iff it cort@mull, so there is no need for a list of free
chunks. The point is that the free characters lying betwkatfirst and the last used characters (st
characters) can only be allocatiedally: whenever a line has to grow in lengtig first checks if there
are enough free characters around it. Otherwise, it renadsie elsewhere. Since editing is essentially
a local activity, the number of such lost characters remeémg low. And the manipulation of a line is
extremely fast and independent of the size of the file, whahlme very huge. A mathematical analysis
of the space/time tradeoff is rather difficult, but empitie@idence suggests that the idea works.

ne takes theeosix standard as the basis fon* X compatibility. The fact that this standard has been
designed by a worldwide recognized and impartial orgaitimatuch aseee makes it in my opinion the
most interesting effort in its league. No attempt is madeuggpsrt ten thousand different versions and
releases by using conditional compilation. Very few assiong are made about the behaviour of the
system calls. This has obvious advantages in terms of catiedemaintenance, and reliability. For the
same reasons, the availability of ansi C (C90) compiler is assumed.

If the system has &erminfo database and the related functions (which are usually iteatdn
curses library), ne will use them. The need for a terminal capability databaser, and the choice of
terminfo (with respect taermcap) is compulsory if you want to support a series of featurest{saas
more than ten function keys) thi@rmcap lacks. Ifterminfo is not availablene can use aermcap
database, or, as a last resort, a built-in set of ANSI coseguences. Some details about this can be
found in Chapter 10 [Portability Problems], page 67.

ne does not allow redefinition of the ESCAPE, TAB or RETURN keys, ofdhe interrupt character
CONTROL-\. This decision has been made mainly for two reasons. Firatloit is necessary to keep

ne’s manual

a user from transforminge’s bindings to such a point that another unaware user canadt with it.
These two keys and the alphabetic keys allow activating anyncand without any further knowledge
of the key bindings, so it seems to me this is a good choice. gexand point, the ESCAPE key usage
should generally be avoided. The reason is that most esegpeisces that are produced by special keys
start with the escape character. When ESCAPE is pressdths to wait for one second (this timing can
be changed with thEscapeTime command), just to be sure that it did not receive the firstattar of

an escape sequence. This makes the response of the keyoxerymsless it is immediately followed by
another key such as”, or by ESCAPE, again. See Chapter 6 [Hints and Tricks], page 59

Note that, as has been stated several times, the custom ke@inds also work when doing a long
input, navigating through the menus or browsing the reguestowever, this is only partially true. To
keep the code size and complexity down, in these aasescognizes only direct bindings to commands,
and discards the arguments. Thus, for instance, if a keyuadto the command lingineUp 2 , it will
act like LineUp , while a binding toMacro MoveltUp would produce no result. Of course full binding
capability is available while writing text. (This limitath will probably be lifted in a future version:
presently it does not seem to limit seriously the configuitstof ne.)

ne has some restrictions in its terminal handling. It does nppsrt highlighting on terminals that
use a magic cookie. Supporting such terminals correctlydyal pain, and | did not have any means of
testing the code anyway. Moreover, they are rather obsdetether lack of support is for the capability
strings that specify a file to print or a program to launch idesrto initialize the terminal.

The macro capabilities afe are rather limited. For instance, you cannot give an argtinea
macro: macros are simply scripts that can be played backratically. This makes them very useful
for everyday use in a learn/play context, but rather inflexibr extending the capabilities of the editor.
However, it is not reasonable to incorporate in an editoméerpreter for a custom language. Rather, a
system-wide macro language should control the ediminterprocess communication. This is the way
of the REXX language, and it is likely that future versionsefwill support optionally macros written
in REXX.

ne has been written with sparing resource use as a basic goaty Bossible effort has been made
to reduce the use afpu time and memory, the number of system calls, and the numbenarcters
output to the terminal. For instance, command parsing i€ dorough hash techniques, and the escape
sequence analysis uses the order structure of strings fomizing the number of comparisons. The
optimal cursor motion functions were directly copied fremacs. The update of files using syntax
highlighting is as lazy as possible: modifications causethes update of the current line, and the rest
of the screen is updated only when you move away. The seggohtaim is a simplified version of the
Boyer-Moore algorithm that provides high performance withiaimal setup time. An effort has been
taken to move to the text segment all data that do not changegdilne program execution. When the
status bar is switched off, additional optimizations resltiee cursor movement to a minimum.

A word should be said about lists. Clearly, handling the textaesingle block with an insertion
gap (a laemacs) allows you to gain some memory. However, the managemerteofext as a linked
list requires much lesspu time, and the tradeoff seems to be particularly favorablgidoal memory
systems, where moving the insertion gap can require a latadsses to different pages.

In practice,ne occupies less memory than any memory-based editor we anme aifa(Of course,
this does not take into account some sophisticated featdings, such as unlimited undo/redo, which
can cause major memory consumption.)

Chapter 8: The Encoding Mess

8 The Encoding Mess

The originalne handled 8-bit text files, and assumed that every byte comang the keyboard could be
output to the terminal. No other assumption was made—fdante, the up/down casing functions did
not assume a particular encoding for non-US-ASCII characiigris choice had a significant advantage:
ne could handle easily several different encodings, with mmgsances for the end user.

Since version 1.3(e supports UTF-8. It can use UTF-8 for its input/output, arahit also interpret
one or more buffers as containing UTF-8 encoded text, actiegrdingly. Note that the buffer content
is actual UTF-8 text-re does not use wide characters. As a positive side-effiectan support fully
the ISO-10646 standard, but nonetheless non-UTF-8 textgoyaxactly one byte per character.

More preciselyany piece of text ime is classified as US-ASCII, 8-bit or UTF-8. A US-ASCII text
contains only US-ASCII characters. An 8-bit text sports atmene correspondence between characters
and bytes, whereas an UTF-8 text is interpreted in UTF-8.dDfse, this rises a difficult questiowhen
should a buffer be classified as UTF-87?

Character encodings are a mess. There is nothing we can dargethis fact, as character encodings
aremetadata that modify data semantid$he same file may represent different texts of differengibs
when interpreted with different encodings. Thus, therevisafe way of guessing the encoding of a file.

ne stays on the safe side: it will never try to convert a file fromemcoding to another one. It can,
however, interpret data contained in a buffer dependingroerecoding: in other words, encodings are
truly treated as metadata. You can switch off UTF-8 at angtiand see the same buffer as a standard
8-bit file.

Moreover,ne uses dazyapproach to the problem: first of all, unless the UTF-8 autantketection
flag is set (see Section 4.9.31 [UTF8Auto], page 45), no gitesrever made to consider a file as UTF-
8 encoded. Every file, clip, command line, etc., is firstlyrsead for non-US-ASCII characters: if it
is entirely made of US-ASCII characters, it is classified asASIl. An US-ASCII piece of text is
compatible with anything else—it may be pasted in any buéfeiif it is a buffer, it may accept any form
of text. Buffers classified as US-ASCII are distinguished byAion the status bar.

As soon as a user action forces a choice of encoding (e.gccamteed character is typed, or an UTF-
8-encoded clip is pasted)e fixes the mode to 8-bit or UTF-8 (when there is a choice, thizedds
on the value of the Section 4.9.31 [UTF8Auto], page 45 flag).cQurse, in some cases this may be
impossible, and in that case an error will be reported.

All this happens behind the scenes, and it is designed sintl886 of the cases there is no need to
think of encodings. In any case, shoulg's behaviour not match your needs, you can always change at
run time the level of UTF-8 support.

ne’s manual

Chapter 9: History

9 History

The main inspiration for this work came from Martin TaillegeTurboText for the Amiga, which is the
best editor | ever saw on any computer.

The first versions ohe were created on an Amiga 3000T, using the port ofdivses library by
Simon John Raybould. After switching to the lower-leteeinfo library, the development continued
underuNn*Xx. Finally, | portedterminfo to the Amiga, thus making it possible to develop on that
platform again. Fone 1.0, an effort has been made to provides@info emulation using GNU'’s
termcap . The development eventually moved to Linux.

Todd Lewis got involved witthe when the University of North Carolina’s Chapel Hill campus mi-
grated its central research computers fmaks to UNIX in 1995. The readily availableNix editors had
serious weaknesses in their user interfaces, especially fihe standpoint ofivs users who were not
too excited about having to move their projects to anothatf@m while learning an entirely new suite
of tools. ne offered an easily understood interface with enough caipiasito keep these neuNix users
productive. Todd installed and has maintaimatlat UNC since then, making several improvements to
the code to meet his users’ needs. In early 1999 his code hdsmiae were merged to become version
1.17.

Support for syntax highlighting was added in 2009 with code techniques heavily borrowed from
the GNU-licensed editgpe , which was written by Joseph H. Allen. Much of the work to irnpor
rate this code intme was undertaken by Daniele Filaretti, an undergraduateegtudorking under the
direction of Sebastiano at the Univegsdegli Studi di Milano.

ne’s manual

Chapter 10: Portablility Problems

10 Portability Problems

This chapter is devoted to the description of the (hopefudlyy few) problems that could arise when
portingne to other flavors ofyN* X.

The fact that onlyposix calls have been used (see Chapter 7 [Motivations and Desiggg 61)
should guarantee that omosix-compliant systems a recompilation should suffice. Unfaataly,
terminfo has not been standardized iBgeE, so that different calls could be available. The necessary
calls aresetupterm() ,tparm() andtputs() . The otheterminfo functions are never used.

If terminfo is not available, the source filemfo2cap.c ' and ‘info2cap.h ' map terminfo
calls ontermcap calls. The complete GNltermcap sources are distributed witle, so no library at
all is needed to use them. You just have to compile using otteeadptions explained in thenakefile ’
and in the README Should you need comprehensive information on Gidihcap , you can find the
distribution files on anytp site that distributes the GNU archives. | should note thaGMNUtermcap
manual is definitely the best manual ever written about teahdatabases.

There are, however, some details that are not specifieelsyx, or are specified with insufficient pre-
cision. The places of the source where such details come tatit are evidenced by theORTABILITY
PROBLEMstring, which is followed by a complete explanation of thelglem.

For instance, there is no standard way of printing exterxdetl| characters (i.e., characters whose
code is smaller than 32 or greater than 126). On many systerse tcharacters have to be filtered and
replaced with something printable: the default behavieuoiadd 64 to all characters under 32 (so that
control characters will translate to the respective I¢thed to print them in reverse video; moreover,
all characters between 127 and 160 are visualized as a eevguestion mark (this works particularly
well with 1ISO Latin 1, but Windows users might not like it). iEhbehavior can be easily changed by
modifying theout() function in ‘term.c .

Note that it is certainly possible that some system featnotstandardized byosixinterfere with
ne’'s use of the I1/0O stream. Such problems should be dealt withllp by using the system facilities
rather than by horriblyifdef ’'ing the source code. An example is given in Chapter 6 [Hintd an
Tricks], page 59.

ne’s manual

Chapter 11: Acknowledgments

11 Acknowledgments

A lot of people contributed to this project. Part of the codemes fromemacs andjoe . Many people, in
particular at the silab (the Milan University Computer Sciemepartment Laboratory), helped in beta
testing the first versions. Daniele Filaretti worked at thiegration of syntax-highlighting code from
joe . John Gabriele suggested several new features and rsldgttested them.

Comments, complaints, desiderata are welcome.

Sebastiano Vigna
Via California 22
[-20144 Milano MI
Italia

vigha@dsi.unimi.it

Todd M. Lewis

CB 1150 2210 ITS Franklin
University of North Carolina
Chapel Hill, NC 27599-1150
USA

utoddi@email.unc.edu

ne’s manual

Command Index

Command Index

A

About. 52
AdjuStVIEW . . .o 49
Alert ... 52
AtomicUndo. 36
AutoComplete ... 33
Autolndent 37
AutoMatchBracket................. i, 32
AutoPrefs. 38
B

Backspace.......... ... 51
Beep. .. 52
Binary. ... 39
C

Capitalize. ... 37
CaseSearch...........ccoiiiiiiiii .. 32
CeNter. . 36
Clear. ... 27
ClipNumber. 30
CloSEDOC. . ..o 27
{07 0P 28
CRLF . 42
CUL. 29
D

DeleteChar.c.cci . 51
DeleteEOL 52
DeleteLine.o i 51
DeleteNextWord, 51
DeletePrevWord. 51
DoUNndo.coooviii 35
E

Erase 29
EScape. ... 53
EscapeTime.o, 41
EXEC. ... 52
EXit . 27
F

FastGUL. 39
Find. ..o 30
FINAREQGEXP . ..o 30
Flags. . ..o 38
Flash. ... 52
FreeForm 39
G

GotoBookmark 50
GotoColumn. ... 47
GotoLiNe. . ..o 46

GotoMark. 47

H

Help. o 52
HexCode 40
I

INSEr. ... 39
InsertChar. 50
InsertLine. 51
INSertString . ..ot 50
InsertTab 51
K

KeyCodeo 53
L

LINeDOWN. 46
LineUpP. ... 46
LoadAutoPrefs 44
LoadPrefs. ... 43
M

MacCro. ... 34
Mark 28
MarkVert 28
MatchBracket 32
Modified. ... 44
MoVveBOS 48
MOVEEOF. 48
MOVEEOL. 48
MOVEEOW. 48
MovelncDown. 49
MovelncuUp. ... 48
MovelLeft. ... 46
MoveRight. 46
MOVESOFR 48
MOVESOL. ... 48
MoveTOS. 48
N

NewDOC. 27
NEeXtDOC. 27
NextPageot 47
NEeXtWOrd. 48
NOFiIleReq. ... oo 40
NOP ... 53
@)

OPeN. .. 26
OpPENCIIP. ..o 29
OpPenMaACIO.ov i 34
OPENNEW . ..o 26

F)

PageDown 47
PageUp . ..o 47
Paragraph...........c.o i 36
Paste ... 29
PasteVert. ... 29
Play. ... 33
PopPrefs. ... 43
PreserveCR. 42
PrevDocC.o 27
PrevPage. ... 47
PrevWord. 47
PushPrefs. ... 43
Q

QUIt. . 27
R

ReadOnly. ... 40
Recordo 33
RedO. ... 35
Refresh ... 53
RepeatLast...........ccviiii 32
Replace. ... 31
ReplaceAll. ... 31
ReplaceOnce. ... 31
RequestOrder. ...t 40
RightMargin. 37
S

SaAVE . 26
SAVEAS. . 26
SaveAutoPrefs. ... 44
SaAVECHIP. . oo 30
SaveDefPrefs. 44
SaveMacrO 34

ne’s manual

SavePrefs. ... 44
SearchBack...............cooiiiii 32
SeleCtDOCo 27
SetBookmark........... 49
Shift. . 29
ShiftTabs 41
StatusBar 40
SUSPEN . .o 53
SYNtaX ..o 44
SYSteM. .. 53
T

Tabs. .. 41
TabSize ... 41
Through. 30
ToggleSEOF. 49
ToggleSEOL 49
TOLOWET. .. 37
TOUPPEN. . oot 36
TUIDO. 41
)

UndelLine............... 35
UNdo. ... 35
UnloadMacrosS. 35
UnsetBookmark................................... 50
UTF8. .. 45
UTFBAULO. .o 45
UTFBIO . .. 46
V

VerboseMacros. 42
VisualBell. 43
W

WOrdWrap.oovve 37

Concept Index

Concept Index

A

AMIGA. ..o 65
ArgQUMENES . ..o 11
Automatic Bracket Matching........................ 8
Automatic Completion................ ... 8
Automatic preferences...................... 6, 23
B

Binaryfiles........ 8, 39
Block operations. i 5
Bookmarks 8
Buffer. ... 3
C

Cachingamacro.ccouiieiiiiiiennenen.. 7
Changingcolors. ... 59
ClipusSage. ..o 5
Closingadocument.cviiiiiieannn. 4
Command argumentsS.oooiiiiiianninn 25
Commandline................ 3,14
Commands. ... 25
Commentsinamacro.cooeeieeniennnn... 7
Configuring the keyboard. 55
Configuringthemenusooo.... 56
Control KeY.o 3
CUISES . o ettt 61
D

Deleting characters ... 5
Deletinglines..........oo i, 5
Document....... ... 3
E

Emergency Save. ... 24
Escapeconventions. ... 25
Escapeusage........covviiiiiiii 59
Escapinganinput.o 13
Executingamacro.ooviiiii i 7
ExecutinguNi*x commands. 8
EXItiNg ..o 4
F

FastGUL ... 12
Features. 1
File. ..o 3
File name completion............. 13
Filerequester........... 4,8,14
Flags. . ..o 6, 25
G

Global Directory.cooii i 11

H

Helprequester., 14
I

Immediateinput 13
Inputline. ... 13
Insertmode. ... 6
Interruptcharacter. 7,61
Interrupting@amacro. ..., 7
Interrupting directory scanning..................... 14
1ISO-8859 family. 63
ISO-8859-1. . ..o\ 63
K

Key bindings. ... 55
Keyboardusage ... 3
L

Line and columnnumbers......................... 12
LITHP . 1
Loadingafile............ciii i 4
LONGiNpuUL. .. oo 13
Longnames........... ... o i, 25
M

Macro definition.o 7
Magic cookieterminals. 61
Menubar. ... 3
Menuusage. ... 3
MENUS. . .. 16
Metakey......oooviiii 3,55, 59
MOde. .. 61
MS-DOSAiles. 8
Multiple documents ... 5
@)

Openingafile....... ... i 4
P

Portability. ... 67
POSIX. . 1,61, 67
Preferences........ ..o i 6
Printable characters............ oL 67
QUItLING. . e 4
Quotingconventions. 25
R

Recordingamacro. ..., 7

Regular Expressions. ..o 20

Repeatingactions. 25
Requester. ... 14
Resource usage. ... 61
S

Savingafile 4
Saving amacro.ovvei e 7
Setting configuration file names. 11
Shortnames. ... 25
ShOrCULS 3
Shortcuts notworking. ... 59
Skipping configurationfiles 11
Startup macro. ... 11
Statusbar.......... ... 3,12
Syntax Highlighting 15
T

termeap. . ..o 1,61, 67

ne’s manual

terminfo. 1, 61, 67
Turbo adjustment. 59
TUBOTEXE . .ot 65
U

Undeletinglines. ..., 5
Unloading macros.oooiiiiiiiii .. 7
UTF-8. e 63
UTF-8 SUPPOIt. ...t 8
UTF-8Support ... 24
V

Vi e 1
W
Writingafile............ o 4

Table of Contents

1

2

INtrodUCtioN 1
BaSICS. . .o 3
2.1 TeIMUNOIOQY . . .\ttt e e e e e e 3
2.2 S ANING . .ot 3
2.3 Loading and SaAViNgttt 4
2.4 EditiNG . ..o 5
2.5 BaSiC Preferences. 6
2.6 BaSIC MaACIOS. . ..ot 7
2.7 More Advanced FEAtUIBS 8
2.7.1 UTF-8 SUPPOIL. . . oot e e 8
2.7.2 BoOKMaArKS. 8
2.7.3 Automatic Completion 9
2.7.4 Automatic Bracket Matchingco i 9
2.7.5 MS-DOSTIES. ..o 9
2.7.6 Binaryfiles i 9
2.7.7 File reqUESTEN. . . . 9
2.7.8 EXeCUtiN@IN*X COMMAaNAS.ttt e 10
2.7.9 Advanced Key bindings.ooiiiiii 10
Reference 11
3.l ATQUIMENES . et 11
3.2 The Status Barno 12
3.3 The InpULLING. ... 13
3.4 The Command LiNe 14
3.5 The REQUESIEL ot 14
3.6 Syntax Highlighting. 15
BT MEBNUS . . 16
BT Rl o 16
3.7.2 DOCUMENTS. . oot e e 16
373 Edit ..o 17
B.7.4 SearCh. ... 17
B8 MaACIOS. . .o 18
376 EXUAS. ..o 18
377 NaVIgation 19
378 Prefs. .o 20
3.8 ReguIar EXPreSSIONS.ttt et e e e 20
B8 L SYNAX . ..o 21
3.8.2 Replacing regular eXpressiQnS.ttt e 23
3.9 Automatic Preferences. 23
3,10 EMEIQGENCY SAVE. . . .ottt et et e 24

311 UTF-8 SUPPOIL. . .ot e e e e e 24

1l ne’s manual

4 COMMANGS. 25
4.1 General GUIEIINES. 25
4.2 File Commands 26

A.2. 1 OPN .t 26
4.2.2 OPENNEW. .« e 26
4.2.3 SOV . .o 26
A.2.4 SAVEAS. ..o 26
4.3 Document CoOmMMAaNGS. 27
4.3, QUL o 27
A.3.2 EXIL .. 27
4.3.3 NEWDOOC . ..o 27
A.3.4 ClBAL . . 27
4,35 ClOSEDOC. . ..ot 27
4.3.6 NEXIDOC 27
A.3.7 PrevDOC. 27
4.3.8 SEIECIDOC. . ..o oo 27
4.4 Clip COMMANAS. . ..ottt e e e e e e e 28
A 41 MaArK. ..o 28
A.4.2 MarkVer 28
e B o])/ 28
A4 4 CUL .o e 29
QA5 PaSte. ... 29
446 PasteVerl 29
QA7 BraSe. ... 29
A.4.8 Shift ... o 29
44,9 OPENCIHP. .ot 29
4400 SaVECID. ..t 30
4.4.11 ClipNUMDBET. .. 30
4.4.12 Througho 30
4.5 Search COmMMaANGS.t 30
A5.1 RN ..o 30
4.5.2 FINAREGEXD. . . ot 30
4.5.3 REPIACE. .. i 31
4.5.4 ReplaCeONCEo 31
455 ReplaceAll. 31
45.6 Repeatlasto e 32
457 MatChBracket 32
4.5.8 AutoMatchBracket. 32
459 SearchBaCK.c.oo 32
4510 CaSeSEarCh.o 32
4.5.11 AUtoCOoMPIEte. ... 33
4.6 Macros COmMMANAS. e 33
4.6.1 RECOIA. ... o 33
A.6.2 Play. ... 33
A.6.3 MaACKO. . .ot 34
4.6.4 OPENMACHKD.ttt e e e e 34
4.6.5 SAVEMACKO.ot 34
4.6.6 UnloadMacCrOS. 35
47 Undo CommMaNdSottt 35
AT7.1 UNAO. ... oo 35
A.7.2 REUO. ... 35
A4.7.3 Undelline. 35
A7.4 DOUNO. e 35

475 AOMICUNAO. . .. 36

4.8 Formatting CommandsSottt 36
A.8.1 CONIEL. ..o 36
4.8.2 Paragraph 36
4.8.3 TOUPPOL . . 36
A4.8.4 TOLOWELo 37
4.8.5 Capitalize.o 37
4.8.6 RIghtMargin. ... 37
A.8.7 WOIAWIa . ..ttt e e e e 37
4.8.8 AUOINAENL. 37

4.9 Preferences CoOmMmMaNdS.ttt 38
491 Flags . .o oot 38
4.9.2 AUIOPTE S . . 38
4.9.3 BINaAIY. ...ttt 39
4.9.4 INSEI . .. 39
4,95 FastGUl. ... 39
4.9.6 FreeForm 39
4.9.7 NOFIIEREQot 40
4.9.8 ReqUESIOIUEL. ...\ttt e 40
4.9.9 StatUSBaAr 40
4,900 HeXCOUEC. 40
4.9.11 ReadOnNly. 40
4.9.12 ESCAPET M .ottt e e 41
4,913 TaDSIZE. . ..o o 41
4.9.14 TabS. . o 41
4.9.15 ShiftTabs. 41
4.9.16 TUIDO. ... 41
4.9.17 VerbOSEMACIOSo oottt 42
4.9.18 PreserveCR 42
4.9.09 CRLE 42
4.9.20 VisualBell 43
4.9.21 PUShPrefs ... o 43
4.9.22 POPPIefs . 43
4.9.23 LoadPrefs. . ..o 43
4.9.24 SavePrefs ... 44
4.9.25 LoadAUIOPIEfS. .. o 44
4.9.26 SaVeAUIOPIElS. ... 44
4.9.27 SaveDe Prefs. ... 44
4,9.28 Modified 44
4.9.29 SYNEAX. . o oo 44
4.9.30 UTF8 . o o 45
4.9.31 UTFBAULO . ..ottt 45
4.9.32 UTFESBIO. e 46

4,10 Navigation CommandsS.ottt e e e 46
4.10.1 MoOVELEt .o o 46
4.10.2 MOVERIGNL. .. . 46
4.10.3 LINBUP. ..o 46
4.10.4 LINEDOWNo 46
4.10.5 GOtOLING. . ..o 46
4.10.6 GOtOCOIUMN. . .o it e 47
4.10.7 GOtOMaArK. . ..o 47
4.00.8 PrevPage 47
4.00.9 NeXIPage 47
4.10.20 PageUp. 47

4.10.11 PageDowWN. 47

\Y, ne’s manual

4.10.12 PrevWOId. 47
4.10.13 NeXtWOId.o e 48
4.10.14 MOVEEOL. .. . 48
4.10.15 MOVESOL. ... 48
4.10.16 MOVETOS. ...t 48
4.10.17 MoVEBOS. ... 48
4.10.18 MOVEEOF. ... 48
4.10.19 MOVESOF. . .. 48
4.10.20 MOVEEOW. ..o e 48
4.10.21 MOVEINCUD . ..ot 48
4.10.22 MOVEINCDOWN. 49
4.10.23 AdJUSITVIBW. . ..o 49
4.10.24 ToggleSEOF.o 49
4.10.25 ToggleSEOL. 49
4.10.26 SetBOOKMaAIK 49
4.10.27 GotoBooKmMarK 50
4.10.28 UnsetBooKmark 50
4,11 Editing Commands.ttt 50
4111 INSEICNAL . .o 50
4.11.2 INSEISIIING. . . oottt e et e e 50
4.11.3 InSertTab.o 51
4.11.4 DeleteChar 51
4.11.5 DeletePrevWord 51
4.11.6 DeleteNextWOord. 51
4.11.7 BaCKSPaACE. 51
4.11.8 INSErLING. ... 51
4.11.9 Deleteline. 51
4.11.10 DeleteEOL.t 52
4.12 Support COMMANGS.ottt e 52
4.12.1 ADOUL. .. 52
A.12.2 AlBI .. 52
402,83 B . . i 52
A12.4 EXEC. ...ttt 52
4.12.5 Flash.o 52
4.12.6 Help .o 52
4127 NOP . . 53
4.12.8 Refresh. 53
4.02.9 SUSPENA . ..t 53
4.12.00 SYSIEM. ..ottt 53
412,11 ESCaPE . ..ottt 53
4.12.12 KeYCOAB. . ..ottt 53
5 Configuration. 55
5.1 KeY BiNINGS . ..ot e aa 55
5.2 Changing MENUS 56
6 Hintsand Tricks 59
7 Motivationsand Design. 61

8 TheEncodingMess, 63

O HISIOY .. 65
10 Portability Problems. 67
11 Acknowledgments. 69
Command IndeX. ... 71

ConceptiIndex. 73

Vi

ne’s manual

