
1 Site

1.1 Site
Site is an abstraction representing logical connection to a site. This is an object containing:

· Flags (ID type, VS, internal state, etc.)

· Site ID (of either format)

· A communication functor

· A communication procedure

· A state of the connection (a record which can be updated)

· Optionally – virtual site ID (site ID of a master)

1.2 Interface to Protocol Layer

‘mySite’ is created with:

 Site* new(IDType type, TaggedRef* ConnectionProcedure, …)

 ConnectionProcedure: Oz Procedure

Order between sites, used for unification and resolving conflicts that arise when two sites simultaneously try to establish a connection to each other:

 Bool isBefore(Site* other)

Protocol layer keeps hash table(s) of sites using hash values obtained with:

 int hash()

Of course, the ‘Site’ abstraction provides also all the methods needed for delivering messages, installing probes, etc. as defined in the new specification of Perdio architecture.
1.3 Interface to Communication Layer

A physical connection to a site is represented by a “communication object”, which is stored in the Site object using:

 void setCommObject(CommObject *co)

1.4 GC

 void setGCMark()

 Bool isGCMarked()

 void resetGCMark()

2 Communication&Accept Procedures

2.1 Configuring ‘mySite’

The ‘mySite’ is configured using the ‘setTriple’ builtin. This builtin is the part of the ‘Connection’ module in the system:

 {Connection.setTriple CommunicationWrapper CommunicationProcedureFunctor

 AcceptProcedure}

2.2 Wrapper

Wrapper for the communication procedure provides the environment necessary for its execution. This environment is represented by the ‘Site Communication Module’ (SCM).

SCM contains 1) Site DataBase, 2) a Module Manager and 3) basic primitives. Site DataBase contains at least the ‘mySite’ itself. A dedication SCM is created for each connection (communication) ; thus, SCM encapsulates the site the communication procedure communicates with.

proc{Wrapper Site}

<< if necessary,

 create SCM from BSCM,

 apply CF (Communication Functor) (using SCM) if necessary,

 store the CPM (Communication Procedure Module) >>

try

{CPM.connect}

catch X then

{BSCM.CPProblem Site}

end

{BSCM.connectDone}

end

2.3 Basic Primitives for SCM

These primitives constitute the interface between the library and built-in part:

BSCM.getCommunicationFunctor
% retrieve it from ‘Site’

BSCM.getCommunicationProcedure
% …

BSCM.getState

% …

BSCM.putState

BSCM.isDynamic

BSCM.getAddress

?

BSCM.putCommunicationProcedure

BSCM.communicate

% hand-over to Perdio

BSCM.isOpening

?

BSCM.permDown

? should not be used?!

BSCM.hasClosed

?

BSCM.marshalSite

% initiator has to send that

BSCM.defineSite

% constructs ‘Site’

BSCM.isVS

2.4 Non-Basic components in SCM

There are also non-basic primitives, defined for each communication function/SCM:

SCM.doVS

% perform VS communication

SCM.connect

% special ‘Open.connect’

SCM.communicate
% hides ‘Site’ wrt BSCM.communicate

SCM.close

% …ditto

SCM.getChannel
% Accept’s procedure ‘listen’

SCM.defineSite

% constructs ‘Site’ but hides it in SCM itself

SCM also keeps the ‘hostSite’ field that represents the site the procedure runs on. It is used by both communication and accept procedures. The site structure is an opaque chunk with only basic operations defined on it.

SCM.hostSite

For communication procedures, SCM hides also the site the procedure is supposed to connect to. This site is used for ‘isVS’, ‘doVS’,

2.5 Example of CommunicationProcedure

functor HisCP

import SCM

export Communicate

proc {Communicate}

<<determine address>>

% doing virtual sites is of course optional…

if {SCM.isVS} then
% is virtual wrt the host site

{SCM.doVS}

% ‘doVS’ establishes a non-stream-based communication channel

% (i.e. the basic operations on it are not read/write but send-msg/rcv-msg

% (with the right buffer initialization)). We don’t even wait here:

raise done end
% just non-local exit…

end

% Otherwise, do “normal” (TCP-based) communication.

% ‘FD’ may be the FD that will later be used by perdio

% ‘FD’ is remembered somewhere inside the SCM module, so that

% at the end all the file descriptors are guaranteed closed.

case {SCM.connect Addr ?FD}

of ok then

<< Auth protocol (using SCM.hostSite) >>

% authentication throws an exception if the target site fails to pass it correctly

<< choosing communication parameters >>

OzStruct = {SCM.constructXX FD}

case {SCM.communicate ReadHandlerId WriteHandlerId OzStruct}

of ok then

% done – the Perdio connection is closed;

<< Auth protocol close >>

{SCM.close FD}

[] lost then

skip

% maybe also store this fact into the log

[] mismatch then
% low-level protocol init discovered a wrong site

skip

[] duplicate then
% both parties tried to connect

skip

% one of them is forced to abandon its try

end

[] timeOut then

% TCP timeout – the CommLayer will try it again

skip

[] noProcess then
% either new address or dead

<< maybe try to find a new address>>

{CP.siteInfoPut << transform {CP.siteInfoGet} >>}

end

end

2.6 Example of AcceptProcedure

‘AcceptProcedure’ is executed by a predefined ‘AcceptServer’, which just executes the procedure in a loop. Execution of ‘AcceptProcedure’ can be interrupted with a signal thrown to its thread, thus, ‘AcceptProcedure’ is not supposed to catch all exceptions. ‘AcceptProcedure’ waits for an incomming connection, then it performs authentication, and finally hands over the channel to Perdio.

functor AcceptFunctor

import SCM

export AcceptProcedure

proc {AcceptProcedure Info}

case{SCM.getChannel ?FD}

of ok then

% authentication can kill the connection

<< auth protcol (using SCM.hostSite) >>

% authentications also sets the ‘Site’ in SCM, so that

% the ‘communicate’ procedure can do its job properly:

{SCM.defineSite << marshaled peer site’s representation >>}

% observe that the peer site may be already connecting on the local initiative,

% in which case the ‘communicate’ will return ‘duplicate’

<< choosing communication parameters >>

OzStruct = {SCM.constructXX FD}

case {SCM.communicate ReadHandlerId WriteHandlerId OzStruct}

of ok then

% done – the Perdio connection is closed;

<< Auth protocol close >>

{SCM.close FD}

[] lost then

skip

% maybe also store this fact into the log

[] mismatch then
% low-level protocol init discovered a wrong site

skip

% both parties return ‘mismatch’ simultaneously

[] duplicate then
% both parties tried to connect

skip

% … it is also symmetric!

end

else skip

% what else can happen here?

end

end

3

