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MAPM, A Portable Arbitrary Precision Math Library
in C

Michael C. Ring

Frustrated by the finiteness of fixed-size arithmetic? This math library gives you the
precision you need.

Sometime ago I had to solve what is a fairly common problem in numerical and scientific
programming. I needed to curve-fit a set of x,y data samples to a polynomial equation. This
problem eventually led me to write my own arbitrary precision math library. Of course I
knew at the time that other libraries existed, but they were lacking some features I
considered important. This article describes some of the added features of MAPM, and some
of the implementation details that readers probably don't think about every day; such as how
to multiply two numbers together in less than O(N2) time. I hope that readers will find
MAPM interesting and useful for their own applications. In particular, thanks to a C++
wrapper class contributed by Orion Sky Lawlor, I believe MAPM is very easy to use.

Why We Need Arbitrary Precision

The project that inspired MAPM had specific requirements related to the maximum error
allowed at each data point. In theory, by increasing the order of the polynomial used in the
curve fit, it is possible to minimize the error of the data samples. After viewing a plot of the
data samples, it became obvious that a high-order polynomial curve fit would be required. I
used a least-squares curve-fitting algorithm. For a 10th-order polynomial, the algorithm
required a summation of the x data samples raised to the 20th power. In general, for an Nth
order polynomial, least-squares will require computing data samples to the 2N power.

At first, everything was working as expected. As I increased the order of the curve fit, the
error in the fit compared to the raw data became smaller. This was true until I modeled an
18th-order polynomial. At this point, the solution did not improve. Higher order curve fits

C/C++ Users Journal - November 2001

(1 of 8) [1/29/2002 9:28:32 AM]



failed to yield improvement as well. I then tried the same input data on three different
computers (with different operating systems and compilers) and generated three very
different solutions. This is when I realized that a more fundamental problem was coming
into play.

As you have probably already guessed, the accumulation of the round-off errors in the
floating-point math was the culprit. I had reached the limits of Standard C's double data
type, at least as implemented on the machines that were available to me. I realized I would
need an arbitrary precision math package to complete my calculations. An arbitrary
precision math package allows math to be performed to any desired level of precision.

For example, consider the two numbers N1 = 98237307.398797975997 and N2 =
87733164872.98273499749. N1 has 20 significant digits; N2 has 22. If you assign these to
C doubles, each variable will maintain only 15-16 digits of precision [1]. If you then
multiply these numbers, the result will be precise only to the 15-16 most significant digits.

The true multiplication result would contain 42 significant digits. An arbitrary precision
math library will do the precise math and save the full precision of the multiplication.
Addition and subtraction errors are also eliminated in an arbitrary precision math library. If
you add 1.0E+100 to 1.0E-100 in normal C (or any other language), the small fractional
number is lost. In arbitrary precision math, the full precision is maintained (~200 significant
digits in this example).

After converting the curve-fitting algorithm to use arbitrary precision math, the three
different computers all computed byte-for-byte identical results. This held true to well
beyond 30th-order polynomials. In case you are curious, my accuracy requirements were
satisfied with a 24th-order polynomial.

MAPM Feature Set

When I searched for an arbitrary precision math library to use, I noticed some common traits
among the available libraries. First, most of them seemed to have a preference for
integer-only math. And second, none of the arbitrary precision C libraries could perform the
math functions typically found in math.h, such as sqrt, cos, log, etc.

It was at this point that I decided to write my own library. The basic requirements for my
library were that it provide natural support for floating-point numbers and that it perform the
most common functions found in math.h.

MAPM will perform the following functions to any desired precision level: Sqrt, Cbrt
(cube root), Sin, Cos, Tan, Arc-sin, Arc-cos, Arc-tan, Arc-tan2, Log, Log10, Exp, Pow,
Sinh, Cosh, Tanh, Arc-sinh, Arc-cosh, Arc-tanh, and also Factorial. The full math.h is
not duplicated, though I think the functions listed above are most of the important ones. (My
definition of what's important is what I've actually used in a real application.) MAPM also
has a random number generator with of period of 1.0E+15.

MAPM has proven to be very portable. It has been compiled and tested under x86 Linux,
HP-UX, and Sun Solaris using the GCC compiler. It has also been compiled and tested
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under DOS/Windows NT/Windows 9x using GCC for DOS as well as (old) 16- and 32-bit
compilers from Borland and Microsoft. Makefiles are included in the online source archive
(available at <www.cuj.com/code>) for the most common compilers under various
operating systems.

The MAPM C++ Wrapper Class

Orion Sky Lawlor (olawlor@acm.org) has added a very nice C++ wrapper class to MAPM.

Using the C++ wrapper allows you to do things such as the following:

// Compute the factorial of the integer n

MAPM factorial(MAPM n)
{
   MAPM i;
   MAPM product = 1;

   for (i=2; i <= n; i++)
      product *= i;

   return product;
}

The syntax is the same as if you were just writing normal code, but all the computations will
be performed with the high precision math library, using the new data type MAPM.

See Listing 1 for another C++ sample. Note the use of literal character strings as constants.
This allows the user to specify constants that cannot be represented by a standard C data
type, such as a number with 200 digits or a number with a very large or small exponent
(e.g., 6.21E-3714).

Algorithms for Implementing MAPM

Since the MAPM contains over 30 functions, it is not practical to discuss all the algorithms
used in the library. I will, however, discuss the more interesting ones.

Multiplication

In an arbitrary precision math library, the multiplication function is the most critical.
Multiplication is normally an O(N2) operation. When you learned to multiply in grade
school, you multiplied each digit of each number and did the final addition after all the
multiplies were completed. To visualize this, multiply by hand a four-digit number by a
four-digit number. The intermediate math requires 16 multiplies (42). This method works
and is very easy to implement; however it becomes prohibitively slow when the number of
digits becomes large. So a 10,000-digit multiply will require 100 million individual
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multiplications!

Faster Multiplication

The next multiplication algorithm discussed is commonly referred to as the
divide-and-conquer algorithm.

Assume we have two numbers (a and b) each containing 2N digits:

let: a = (2N)*A1 + A0, b = (2N)*B1 + B0

where A1 is the "most significant half" of a and A0 is the "least significant half" of a. The
same applies for B1 and B0.

Now use the identity:

ab = (22N + 2N)A1B1 + 2N(A1-A0)(B0-B1) + (2N + 1)A0B0

The original problem of multiplying two 2N-digit numbers has been reduced to three
multiplications of N-digit numbers plus some additions, subtractions, and shifts.

This multiplication algorithm can be used in a recursive process. The divide-and-conquer
method results in approximately O(N1.585) growth in computing time as N increases. So a
10,000-digit multiply will result in only approximately 2.188 million multiplies. This
represents a considerable improvement over the generic O(N2) method.

Really Fast Multiplication

The final multiplication algorithm discussed utilizes the FFT (Fast Fourier Transform). An
FFT multiplication algorithm grows only at O(N*Log2(N)). This growth is far less than the

normal N2 or the divide-and-conquer's N1.585. An FFT tutorial is beyond the scope of this
article, but the basic methodology can be discussed.

First, perform a forward Fourier transform on both numbers, where the digits of each
number are regarded as the samples being input to the FFT. This yields two sets of
coefficients in the "frequency" domain. Each set of coefficients will contain as many
samples as the number of digits in the original number. (Also, each coefficient will be a
complex number.) Second, multiply the two sets of coefficients together. That is, if the
numbers being multiplied are a and b, perform ca0*cb0, ca1*cb1, etc., where can, cbn are the
frequency-domain coefficients of a and b. This pair-wise multiplication in the frequency
domain is equivalent to convolution in the "time" or sample, domain. This yields the correct
result, because when you multiply two N-digit numbers together, you are really performing
a form of convolution across their digits. Third, compute the inverse transform on the
product sequence. Lastly, convert the real part of the inverse FFT to integers and also
release all your carries in the process.

The FFT used in MAPM is from Takuya Ooura. This FFT is fast, portable, and freely
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distributable.

To really see the differences in these three multiplication algorithms, compare these run
times for multiplying two 1,000,000-digit numbers:

FFT Method          : 40 seconds
Divide-and-Conquer  : 1 hr, 50 min
Ordinary N2         : 23.9 days*

*projected!

The MAPM library uses all three multiplication algorithms. For small input numbers, the
normal O(N2) algorithm is used. (After all, you don't need a special algorithm to multiply 43
x 87.) Next, the FFT algorithm is used. FFT-based algorithms do reach a point where the
floating-point math will overflow, so at this point the divide-and-conquer algorithm is used.
Once the divide-and-conquer algorithm has divided down to the point where the FFT can
handle it, the FFT will finish up.

Division

Two division functions are used.

For dividing numbers less than 250 digits long, I used Knuth's division algorithm from The
Art of Computer Programming, Volume 2 [2] with a slight modification. I determine right in
step D3 whether q-hat is too big, so step D6 is unnecessary. I use the first three (base 100)
digits of the numerator and the first two digits of the denominator to determine the trial
divisor, instead of Knuth's use of two and one digits, respectively.

For dividing numbers longer than 250 digits, I find a/b by first computing the reciprocal of
b and then multiplying by a. The reciprocal y = 1/x is computed by using an iterative
method such that:

yn+1 = yn(2 - xyn)

where yn is the current best estimate for 1/x. This calculation is performed repeatedly until
yn+1 stops changing to within a predetermined tolerance.

Exponential, Sine, and Cosine

These three functions are all computed by using a series expansion. Translations of the input
are required to efficiently calculate these quantities. For more detail, see the accompanying
sidebar, "Practical Series Expansions for Sine, Cosine, and Exponentials"

Random Number Generator

The random number generator is also taken from Knuth [3]. Assuming the random number
is X, compute (using all integer math):
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X = (a*X + c) MOD m

where x MOD y represents x modulo y. From Knuth, m should be large, at least 230.
MAPM uses 1.0E+15. The a coefficient should be between 0.01*m and 0.99*m and not
have a simple pattern of digits. The a coefficient should not have any large factors in
common with m and (since m is a power of 10 in this case) if a MOD 200 = 21, then all m
different possible values will be generated before X starts to repeat. MAPM uses a =
716805947629621, so a MOD 200 does equal 21, and a is also a prime number. There are
few restrictions on c, except that c can have no factor in common with m, hence I have set c
= a. On the first call, the system time is used to initialize X.

Newton's Method (Also Known as Newton-Raphson)

Unlike sine and cosine, which have convenient series expansions, not all math functions can
be computed with a closed-form equation. Instead, they must be computed iteratively. These
functions in MAPM (reciprocal, square root, cube root, logarithm, arc sine, and arc cosine)
all use Newton's method to calculate the solution. (Although there are series expansions for
logarithm, arc sine, and arc cosine, they all converge very slowly, so they are not practical
for calculating these functions.) In general, the use of Newton's method in this application
depends on the existence of an inverse for the function being computed [4]. An initial guess
is made for f(x), where f is the function being computed and x is the input value. Call this
initial guess y. This initial guess is then plugged into the equation:

yn+1 = yn - (g(yn) - x)/g'(yn)

where:

x is the input value
yn = current "guess" for the solution to

     f(x)
g(yn) = inverse function of f(x) 

        evaluated at yn
g'(yn) = first derivative of the inverse

         of f(x) evaluated at yn
yn+1 = refined estimate of f(x)

This calculation is iterated until yn+1 stops changing to within a certain tolerance.

Newton's method is quadratically convergent. This results in doubling the number of
significant digits that must be maintained during each iteration. MAPM uses the
corresponding Standard C run-time library function to provide the initial guess.

As an example, I will demonstrate how to implement the square root function using
Newton's method. Newton's method essentially asks: if the current guess for sqrt(x) is y,
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how close does squaring y come to producing x?

The equation for the inverse function g(y) is derived as follows:

f(x) = y = sqrt(x)
g(y) = y2 = x, the inverse function of
            f(x)
g'(y) = 2y, the derivative of the
        inverse function

Set up the iteration:

yn+1 = yn - (g(yn) - x)/g'(yn)

yn+1 = yn - (yn2 - x)/2yn

and after a little algebra:

yn+1 = 0.5*[yn + x/yn]

To calculate the square root of 8.3, suppose I start with an initial guess of 1.0. (In actual use,
I would generate a better initial guess.)

yn+1 = 0.5*[yn + 8.3/yn]

The iterations of yn are as follows:

iteration              y
------------------------------------
0          1.00000000000000000000000
1          4.65000000000000000000000
2          3.21747311827956989247311
3          2.89856862531072654536764
4          2.88102547060539111310782
5          2.88097205867270336382209
6          2.88097205817758669914416
7          2.88097205817758669910162
8          2.88097205817758669910162

As you can see, the iteration is converging to a constant value, the square root of 8.3.
Similar iteration loops are used to compute the reciprocal, cube-root, logarithm, arc sine,
and arc cosine functions. The library actually uses a better sqrt iteration:

yn+1 = 0.5*yn*[3 - x*yn2]

This iteration actually finds 1/sqrt(x). It is preferable since there is no division operation.
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Division is slower than multiplication and is best avoided when possible.

Summary

MAPM is a portable arbitrary math library that is easy to use, especially when used with the
C++ wrapper class. It supports most of the math functions encountered in a typical
application, so it can be used in many applications that require arbitrary precision. MAPM
uses an FFT-based algorithm for multiplication, which is typically the performance
bottleneck for arbitrary precision math libraries.

Notes and References

[1] This assumes that doubles are implemented as 64-bit words, which is the case for most
general purpose computers available today.

[2] Donald E. Knuth. The Art of Computer Programming, Volume 2, Seminumerical
Algorithms, Third Edition (Addison-Wesley, 1998), pages 270-273.

[3] ibid., pages 184-185.

[4] The reciprocal function is its own inverse, which might seem to pose a problem in using
Newton's method. Fortunately, it can be factored out so that it does not actually appear in
the algorithm.
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Listing 1: Using the C++ wrapper class with MAPM

//    
//    Example MAPM C++ code with output.
//
//    Note the use of literal character strings as constants.
//
//    This allows the user to specify constants that cannot be
//    represented by a standard C datatype, such as a number with 
//    200 digits or a number with a very large or small exponent 
//    (i.e., 6.21E-3714).
//

char  outbuf[256];
MAPM  u, v, w, x, y, z;         // arbitrary precision datatype

m_apm_cpp_precision(50);        // set MINIMUM precision level
                                // for all calculations

x = 9.34231;
y = -21;
z = "-8.982349249829824921479824924792347921E-17";

w = (82.30421 + sin(x / "21.11")
              / exp(y * 0.0726426)) * "4.32917E-2" / z;
v = "3.742416" * log(-w);
u = sqrt(v) + cbrt(v);

x.toString(outbuf, 50);   printf("x = [%s] \n",outbuf); 
y.toString(outbuf, 50);   printf("y = [%s] \n",outbuf); 
z.toString(outbuf, 50);   printf("z = [%s] \n",outbuf); 
w.toString(outbuf, 50);   printf("w = [%s] \n",outbuf); 
v.toString(outbuf, 50);   printf("v = [%s] \n",outbuf); 
u.toString(outbuf, 50);   printf("u = [%s] \n",outbuf); 

//    
//    end sample code 
//    

/*
Output from above code :

x = [9.34231000000000000000000000000000000000000000000000E+0] 
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y = [-2.10000000000000000000000000000000000000000000000000E+1] 
z = [-8.98234924982982492147982492479234792100000000000000E-17] 
w = [-4.06165846135776503301770738763183914451375637893923E+16] 
v = [1.43121038693447060414449698088102300924570797933606E+2] 
u = [1.71941170788317776083850581271655444461072359345223E+1] 
*/

End of Listing 
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Practical Use of Series Expansions

The series expansion for the exponential, sine, and cosine functions are as follows:

exp(x) = 1 + x + x2/2! + x3/3! + x4/4! + ...

sin(x) = x - x3/3! + x5/5! - x7/7! + x9/9!

cos(x) = 1 - x2/2! + x4/4! - x6/6! + x8/8!

Now assume you want to calculate exp(543.7). (If you are curious, the answer is
1.336317976830752149708709910114E+236.) You could put 543.7 into the above formula
and evaluate the series until the final term reached the precision you desire. However, this
method will take numerous iterations to converge. Since |x| > 1, the numerator will continue
to grow larger, and the series won't converge until the factorial in the denominator can
overtake the numerator. Even though this formula is numerically correct, it is not a practical
method to calculate the exponential. What is needed is a translation of x so the magnitude of
x is less than one. (Hopefully, x will be significantly smaller than one.) The smaller the
magnitude of x, the faster the above series will converge to the desired precision. The
translation of x is provided by David H. Bailey's MPFUN software package. This is a
multiple precision math library written in Fortran. Dr. Bailey's algorithm uses a modification
of the series expansion:

exp(t) = (1 + r + r2/2! + r3/3! + ...)q*2n

where q = 256, r = t'/q, t' = t - n*Log(2), and where n is chosen so that -0.5*Log(2) < t' <=
0.5*Log(2). Reducing t mod Log(2) and dividing by 256 insures that -0.001 < r <= 0.001,
which accelerates convergence in the above series.

After the series expansion, you must raise the result to the 256th power. This may seem at
first a daunting task, but remember that you can simply square the result the required
number of times.

x4 = (x2)2

x8 = ((x2)2)2

x16 = (((x2)2)2)2)
x256 = ((((x2)2 ... 8 times

Also note that this method requires the value of log(2). The value of log(2) in the MAPM
library is accurate to 128 decimal places. If you want an exponential calculation that is
accurate to greater than 128 decimal places, the library will re-compute log(2) on the fly as
necessary to be as precise as the exponential precision specified.
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Now assume you want to calculate the sin(10000.0), where 10000.0 is in radians. This is
certainly a valid argument to the sin function, though passing 10,000 to the series expansion
will be quite inefficient due to the magnitude of the numerator being greater than one, as
was previously discussed for the exponential function. You need a translation of x such that
|x| < 1. In the MAPM library, two translations are performed first, and the series expansion
is done in the third step. The first obvious translation is to limit the input angle to +/- pi
radians. This is simply an x MOD 2*pi operation. Although this operation limits the input
argument to +/- pi, pi is greater than one, so the series will still take too long to converge.

The second translation uses the multiple angle identity for sin(5x). This identity is:

sin(5x) = 16*sin5(x) - 20*sin3(x) + 5*sin(x)

If you can calculate sin(0.5), you could just use the above identity to compute sin(2.5). If
you desire sin(3), calculate sin(0.6) and use the identity. By using this identity, the
worst-case x input to the series expansion will be pi/5 or 0.6283. This is less than one, so the
series will converge significantly faster than before. However, you can do better. To
calculate sin(0.6283), you can use the multiple angle identity a second time to decrease the
worst-case number to 0.6283/5 or 0.1257. You could (in theory) perform this operation
numerous times, but you do reach the point of diminishing returns. The MAPM library uses
this identity three times, so the worst-case input to the series expansion is pi/(5*5*5), or
0.0251. This is small enough so that the sine series does converge quite rapidly to the
desired precision.

I have not seen the multiple angle identity translation used in this context before, so I
believe the MAPM library is the first arbitrary precision library to use this technique.

The cosine function also uses a multiple angle identity to minimize the value of the number
passed to the series expansion. The following algorithm summarizes the process. It is
essentially the same in concept to the algorithm used for computing sin(x).

Step 1. Limit input argument to +/- pi.

Step 2. Use the multiple angle identity for cos(4x):

cos(4x) = 8*[cos4(x) - cos2(x)] + 1

Use this identity recursively three or four times as needed; that is, multiply the input angle
by 1/(43) or 1/(44) respectively. If |x| is less than one radian, recurse three times. If |x| >= 1
radian, recurse four times.

This step yields a worst-case |x| = ~0.0156 (1/64 > pi/256).

Step 3. Apply traditional series expansion.
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