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Lerc (codec) version: 2.5.  

Endianess: Little Endian 

Remark: This is the structure in memory. The encoding is done into a memory blob, 

which can then be saved to disk or transmitted over the network etc.  

Multiple values per pixel: Starting with Lerc version 2.4, multiple (or nDim) values per 

pixel can be encoded.  

Multiple bands: Here we describe the encoding of one band. For multiple bands the 

different single band blobs get concatenated. The bit mask is only stored with the first 

band and omitted for the other bands.  

As an example, an RGB image can now be encoded as a single band blob using nDim 

= 3, or band sequential as 3 bands and nDim = 1.  

 

 

 



LERC Blob Header 
 

 
Item 
 

 
Format 

 
Size 

Format Identifier String Char[6] = “Lerc2 “ 6 

Format Version (= 5) Int 4 

Checksum UInt 4 

Image Height in pixel Int 4 

Image Width in pixel Int 4 

Number of values per pixel Int 4 

Number of valid pixels Int 4 

Micro block size (e.g., 8) Int 4 

Blob size in bytes Int 4 

Lerc datatype Int 4 

MaxZError Double 8 

zMin = min image value Double 8 

zMax = max image value Double 8 

 

Bit Mask 
 

The valid / invalid bits are represented as a bit stuffed byte array with 8 bits per byte 

representing 8 pixels. The size of this byte array is then (width * height + 7) / 8. This bit 

mask is only encoded for the first band and if needed, meaning 0 < number of valid 

pixels < width * height. If all pixels are valid or all invalid the mask is not encoded. The 

first element is an integer having the size of the mask blob in bytes. If the mask is not 

encoded, it is 0.  

 

 
Item 
 

 
Format 

 
Size 

Mask blob size in bytes Int 4 

 

The bit mask byte array gets run length encoded as follows: If 5 or more consecutive 

bytes have the same value (255 or 0 being the most common), a negative short integer 

equal to the number of same values plus this byte value is encoded (2 + 1 bytes). If less 

than 5 consecutive bytes have the same value, then a positive short integer equal to the 



number of different (or not same stretch) bytes is encoded, together with the array of 

different bytes (2 + n bytes). We use the short integer -32768 to mark the end of the 

encoded mask blob.  

Note that the bit mask, if it gets encoded at all, takes usually much less space than the 

data itself. Typically around one or a few percent of the space needed for the data. 

Therefore we try to keep the mask encoding as simple as possible. A more complicated 

encoding would hardly pay off in terms of better overall compression.  

If all valid pixels have the same value (zMax = zMin), or all pixels are invalid, then the 

encoding ends here.  

 

Data Ranges 
 

Starting with Lerc version 2.4, nDim values per pixel can be encoded. This requires us 

to save the data ranges as nDim pairs of min and max values. This is stored binary raw 

using the pixel data type. In case of nDim = 4 and data type unsigned short, this would 

take 16 bytes. In addition, the overall data range is still stored in the header fields zMin 

and zMax.  

 

Pixel Values 
 

From here on, the valid / invalid pixels mask is known. Both in encoding and decoding. 

For encoding, there are 3 possible modes  

- Main or block mode. Divide the image into 8x8 or 16x16 blocks (micro block size, 

see blob header). For each such block, determine block statistics. Based on this 

block statistics, compress the block. Each block can be compressed and 

encoded differently.  

 

- Huffman mode. Currently only for 8 bit data (byte or char data type) lossless 

compression (MaxZError < 1).  

 

- Raw binary mode, write valid data raw binary in one sweep.  



The encoder should always pick the mode resulting in the best compression possible. 

The decoder should assume as little as possible. For instance, the decoder should work 

for any micro block size, even though only 8 and 16 are currently used.  

We go now through these 3 modes, from easier to more complex, starting with the raw 

binary mode.  

 

1. Raw Binary Mode 
 

This mode might be called if only few pixels are valid, such as just one corner of the 

image. If a large raster is tiled up, then the lower right corner tile could be such a tile 

with only a small fraction of the pixels valid. In that case it might be best to simply write 

out the few valid pixels as raw binary. Another example is the lossless encoding of 

floating point data. The only compression, if any, is that only valid pixel values are 

encoded. The bit mask above has the information which pixels are valid and which are 

not. In the byte stream, we have a single byte flag for this mode: 

 

 
Item 
 

 
Format 

 
Size 

Flag for write data raw binary 
in one sweep (1 = yes, 0 = no) 

Byte 1 

 

If this byte is 1, all valid pixels (numValidPixels is in the Lerc blob header) are written 

out raw binary taking the number of bytes (numValidPixels * nDim * sizeof(data type)).  

If this byte is 0, the stream continues with one of the other modes.  

 

2. Huffman Mode 

 

This mode is currently only tried for 8 bit input data, meaning data types byte and char, 

and lossless encoding, meaning MaxZError < 1. The main mode of Lerc described 

further below was originally designed for higher bit depth data, such as 16 bit integer or 

floating point data. It is not optimal for 8 bit data. For this reason this Huffman mode was 

added later for the important case of encoding 8 bit data lossless. If the bit depth is 



more than 8 bit, or if the encoding is not lossless (MaxZError >= 1), then the Huffman 

mode is currently not used.  

In Lerc version 2.4, the Huffman mode has been extended to nDim > 1 in two ways. 

First, the same procedure as for nDim = 1 is repeated for each array index. However, 

we still use just one Huffman code book for all the data. Second, as it comes at no extra 

computational cost, we not only compute the number of bytes needed for Huffman 

encoding the delta image, but also for Huffman encoding the pixel values directly. And 

then pick the better one. Here we continue with explaining in more detail the Huffman 

encoding of the delta image.  

The delta image is Huffman encoded as follows. First, the image is turned into a 

difference or delta image, to make use of the strong local correlation usually present in 

2D images. For each pixel, if the left neighbor pixel exists and is valid, subtract its value. 

If that is not the case, try with the pixel above. If that is not available, subtract the last 

known valid pixel value. The last known valid pixel value gets initialized with 0.  

Second, we compute the histogram over these delta values. When computing the 

deltas, we make use of the overflow properties of the byte and char data types. For 

example, (Byte)2 – (Byte)255 = (Byte)3. Because on decode (Byte)255 + (Byte)3 = 

(Byte)2. This way the size of the delta histogram is only 256, not 512. The delta 

histogram has usually a strong peak at or close to 0.  

Third, from this histogram, we compute the optimal Huffman code book. Both histogram 

and Huffman code book are computed once for the entire image. From this the number 

of bytes needed for Huffman encoding the image can be directly calculated without 

actually doing the encoding. This way the encoder can compare to the other modes and 

decide which one is the best to use.  

 

 
Item 
 

 
Format 

 
Size 

Image Encode Mode, enum: 
Block, DeltaHuffman, Huffman 

Byte 1 

 

 

If the Huffman mode wins, the byte stream continues as follows.  

 

 



 
Item 
 

 
Format 

 
Size 

Huffman Format Version (= 4) Int 4 

Huffman blob size in bytes Int 4 

Min Index for non-zero codes 
(e.g., 217) 

Int 4 

Max Index for non-zero codes, 
exclusive (e.g., 321) 

Int 4 

 

 

As the delta histogram often contains a long stretch of zeros, we store the min and max 

indexes for which we have non-zero Huffman codes. If the histogram has entries for all 

indexes, then this index range is simply [0, 256]. If we have a peak around 0, then this 

range could be [217, 321], using wrap-around. The code for index 320 would be the 

code for index (320 – 256) = 64. After this header, there are three data sections:  

- For the range of non-zero codes, encode the code lengths, index by index or 

symbol by symbol, bit stuffed at a fixed bit length which is determined by the 

largest code length. As the max code length allowed is hard coded as 32, the 

code lengths cannot take more than 6 bits per element which is hardly ever 

reached.  

 

- For the same range, encode the Huffman codes. As their lengths are already 

encoded above, we can bit stuff them directly into an array of unsigned integer 

uint32.  

 

- Encode all valid pixels of the image. For each pixel delta value, bit stuff its 

variable length Huffman code into an array of unsigned integer uint32. (The 

encoding of the pixel delta values is the same as for the Huffman codes.) 

 

Let’s go through this in more detail. For the first section, we use a more general module 

for bit stuffing an array of unsigned integer into an array of bytes. The same module is 

also used by the main or block Lerc mode as described further below. It starts with a 

small header consisting of 2 numbers. The first one is a byte and contains the number 

of bits used to encode and bit stuff all elements of the array. As the length of the 

Huffman code cannot exceed 32 bits (the upper limit set in the encoder), the largest 

unsigned integer possible to be bit stuffed is 32. This corresponds to length 6. The first 

5 bits (0-4) are used to encode this length (here, up to 6). The upper 2 bits (6-7) are 

used to encode the type of the second number in the header. Depending on the size of 



the array to be encoded, a uint (0), ushort (1), or byte (2) can be used. Here, with a max 

number of 256 elements, either 1 or 2 bytes will be needed to encode that number.  

 

 
Item 
 

 
Format 

 
Size 

Number of bits per element (bits 0-4). Bit 5 = 
0 here.  Bits 6-7 encode the next type. 

Byte 1 

Number of fixed length values UInt (0), UShort (1), or 
Byte (2) 

1 or 2 (or 4, rare) 

 

After this header, the unsigned integer data are bit stuffed using the fixed bit length into 

a byte array.  

The second section is easier to encode, we don’t even need a header. We simply bit 

stuff the Huffman codes in the same order as the Huffman code lengths into an array of 

uint32. This time the bit length is variable, not fixed. As these code lengths are encoded 

above, the codes are easy to retrieve.  

The third section is the pixel values or data. They get encoded just the same as the 

Huffman codes. The difference is in the decoding. For the variable length Huffman 

codes representing the pixel values, the lengths of these codes are not known when 

decoding them. Lookup tables are used for their decoding.  

Remark about encoding the Huffman codes. Since Huffman code book version 4 

canonical Huffman codes are used. Meaning they could be constructed by the decoder 

from the code lengths alone. Despite that, we decided to keep writing and reading the 

Huffman codes. Reasons:  

- It increases the decoder’s forward compatibility. We can still change the code 

without breaking existing decoders.  

- It reduces the decoder’s complexity. Reading the code is easier than having to 

construct it. It is easier for a JavaScript or Python developer to write a Lerc 

decoder.  

- The savings from not writing them are small, only a few hundred bytes.  

 

3. Main or Block Mode 

 

General remarks, most of which are not mandatory for the byte stream definition: 



- Both the image dimensions (width and height) and the pixel is valid / invalid bit 

mask are known at this point, both in encoding and decoding.  

- The image gets divided into square blocks of same size, with 8x8 pixels being 

the size most often used. This size is encoded in the Lerc header as “micro block 

size”. The blocks are written left to right, and row by row. Since Lerc version 2.4 

the input image can have nDim values per pixel. The encoder turns this into 

nDim blocks.  

- The last block (or last set of nDim blocks) in a row or column can have different 

size, down to 1x1 pixels.  

- For 8 bit data lossless, both block mode and Huffman mode are tried, and the 

mode giving better compression is taken. A byte flag is written indicating this 

choice. 

- When the block mode is tried, the data is usually not encoded. Instead block 

statistics is collected to calculate the compressed block size in bytes.  

- After the total number of bytes for block size 8x8 pixels is known, and if the 

resulting bpp <= 2, block size 16x16 pixels is also tried, to reduce the block 

header overhead.  

Encoding one block of N x N pixels: 

- Find min and max values zMin and zMax. Count number of valid pixels. Count 

how many consecutive pixels have the same value.  

- Cover special cases: All pixels are invalid, all pixels are 0, or all pixels have the 

same value z0. In that case, the entire block is encoded as one byte, or as one 

byte plus offset z0.  

- Check if the data can / should be quantized at all. Otherwise encode that block 

raw binary uncompressed. For instance, if the data type is float, and the value 

range is large while MaxZError is small (caller asks for high precision), then 

quantizing the data may not reduce the bpp needed to encode. Here we demand 

that the max unsigned integer created by the quantization is less than 2^30. This 

is for types of 32 bits or larger, such as int, uint, float, double. For 16 bit types, we 

demand max < 2^15, accordingly.  

- Write the block header as small as possible. For the offset z0, we write it using a 

variable data type. For instance, if the data type is integer (int32), but the offset 

can be written as a short (int16), then it is written as a short. The byte before the 

offset encodes the data type used in the two upper bits 6-7. For a detailed 

description of the LERC block header, see below.  

- Quantize and bit stuff the data. The pixel values are quantized based on the 

offset zMin and the error tolerance MaxZError as given by the caller. The valid 

pixel values get converted into an array of positive integer values (uint32). This 



array is bit stuffed into a byte array using a fixed bpp based on the max value. An 

encoding example is given further below.  

- If there are enough consecutive pixels having the same value, also try the lookup 

table (LUT) mode for this block. If there are only a few different (quantized) 

values present in a block, create an LUT from them, and assign the small index 

value to each pixel pointing to the correct entry in the LUT. Both the LUT and the 

array of indexes are then bit stuffed into a byte array using a fixed bpp based on 

their max values.  

- Since Lerc version 2.5, and for nDim > 1, or more than one value per pixel, block 

iDim can now be encoded relative to the previous block (iDim – 1). Example: 

Assume nDim = 4. Before version 2.5, 4 blocks of size 8x8 pixels were encoded 

independently (for this block position in the image). This scheme did not exploit 

the correlation often present in such neighboring bands. Since version 2.5, the 

first block (iDim = 0) gets encoded same as before. For the next block (iDim = 1), 

the difference to the previous, decoded block is computed. Then the compressed 

size for both, the raw and the difference or delta block, is computed. The smaller 

size is taken. So each block iDim can get encoded either relative to the previous 

block (iDim – 1), or absolute same way as before. Which of the 2 it is gets 

encoded in Bit 2 in the first byte in the Lerc block header. We picked one of the 4 

bits which were used before for consistency checking. We keep using the 

remaining 3 bits for the same consistency check.  

 

 

LERC Block Header 
 

 
Item 
 

 
Format 

 
Size 

Encoding Type (bits 0-1): 
  Value = 0: raw binary 
  Value = 1: quantized and bit stuffed 
  Value = 2: all 0 (encode only this byte) 
  Value = 3: all constant (encode only this 
header) 
 
For cases 0 and 2, the rest of the header is 
skipped.  
 
Before version 2.5: 
Bits 2-5 contain a 4 bit code for the decoder 
to check the integrity of the data.  

Byte 1 



 
Since version 2.5: 
Bit 2: 1 means block iDim is encoded relative 
to block (iDim – 1). 0 means block is encoded 
as usual, not relative.  
Bits 3-5 contain a 3 bit code for the decoder 
to check the integrity of the data.  
 
Bits 6-7 encode the next type. 

Offset Variable Type 8, 4, 2, or 1 

 

  



Variable Type as used in the LERC Block Header 
 

The idea is to use the smallest data type needed to write a data value without loss, and 

encode that type used in the upper 2 bits 6-7 in the byte right before the variable type 

entry in the block header.  

The 8 bit data types byte and char don’t need downsizing, which gets encoded as 0 in 

the byte before.  

The unsigned integer types are also straightforward: ushort (0) tries byte(1). Uint (0) 

tries ushort (1) and byte (2).  

For the signed integer types, we chose: short (0) tries byte (1) and char (2). Int (0) tries 

ushort (1), short (2), and byte (3).  

For the floating point types float and double, we chose: float (0) tries short (1) and byte 

(2). Double (0) tries float (1), int (2), and short (3).  

 

Data Type 
Orig / Used 

 
Char 

 
Byte 

 
Short 

 
UShort 

 
Int 

 
UInt 

 
Float 

 
Double 

Char 0        

Byte  0       

Short 2 1 0      

UShort  1  0     

Int  3 2 1 0    

UInt  2  1  0   

Float  2 1    0  

Double   3  2  1 0 

 

 

Array of unsigned integer (uint32) values bit stuffed using a fixed number of 

bits per element 
 

Here we describe a core module. It is used to write out the quantized values for each 

block (in the block mode), or to write out the Huffman code lengths (in the Huffman 

mode). It starts with a small header:  

 

 



 
Item 
 

 
Format 

 
Size 

Number of bits per pixel (bits 0-4). 
 
Bit 5 flags simple bit stuffing (0) or LUT (1) 
mode.  
 
Bits 6-7 encode the next type.  

Byte 1 

Number of fixed length values UInt (0), UShort (1), or 
Byte (2) 

1 or 2 (or 4, rare) 

 

By far the most common case is simple bit stuffing (bit 5 = 0). Here the N different 

values are bit stuffed into a byte array using a fixed number of bits per pixel, as 

determined by the largest element in the array.  

If the LUT mode offers better compression (bit 5 = 1), then the different array elements 

are sorted in increasing order. When encoding a LERC block, the min quantized value 

is always 0 and is therefore omitted in the LUT. The following is written: A byte 

containing the full size of the LUT (including the leading 0), the LUT bit stuffed using the 

number of bits per pixel as specified in the above header (without the leading 0), and 

finally the indexes to the LUT for all valid pixels in the block, also bit stuffed at a fixed 

number of bits per pixel as determined by the size of the LUT. Note that this bpp must 

be smaller than the one for the LUT itself, otherwise the LUT mode would not have 

been chosen.  

 

Built-in Integrity Checks 
 

We added more rigorous integrity checking starting with version Lerc2 v3. After 

encoding the data into a Lerc memory blob, we compute the Fletcher32 checksum 

starting at the memory address behind the checksum field in the Lerc header and 

ending with the end of the blob. The result gets written to the checksum field in the 

header. Before decoding the Lerc memory blob, we first compute the checksum the 

same way as above. (We also check that the buffer we got is large enough to hold the 

Lerc blob based on the blob size stored in the Lerc header.) Then we compare the 

checksum just computed to the one stored in the header and return false if they differ. 

The previous consistency checks stay in place as described below.  

Wherever possible, intermediate data, such as bit or byte lengths, value ranges, number 

of elements etc are checked for consistency. Both in the encoder and decoder. If 

anything inconsistent or out of order gets detected, encoder or decoder return false.  



As an extra consistency check, the 4 bits 2-5 in the first byte of the Lerc blob header are 

filled with the simple “control signature” (15 & (j / 8)) with j being the image column 

coordinate of the upper left pixel of the block being encoded. The decoder checks this 

code and returns false if it should not match. Since Lerc version 2.5 only the 3 bits 3-5 

are used for this check.  

 

Example for encoding one block using MaxZError = 0.01 
 

Let’s go through all steps of encoding one 4 x 4 pixels sample data block. Note that blocks are 

usually larger than that, 8 x 8 or more pixels.  

 

1234.1234 1241.8741 1256.2759 1267.2950 

1280.8725 1248.2917 1272.7511 1279.3802 

void 1222.2943 1239.3072 void 

1264.9720 1250.0852 void void 

 

Step 1: Calculate the basic statistics for this data block 

Min = 1222.2943 

Max = 1280.8725 

Number of valid pixels = 12 

Number of invalid pixels = 4 

 

Step 2: Determine how to encode this block. Assume MaxZError = 0.01. 

(Max – Min) / (2 * MaxZError) = 2,928.91 

This is less than 2^30. So we can quantize the pixel values from the above block, using  

n(i) = (unsigned int)((x(i) – Min) / (2 * MaxZError) + 0.5) 



resulting in 

 

591 979 1699 2250 

2929 1300 2523 2854 

void 0 851 void 

2134 1390 void void 

 

Step 3: Determine number of bits needed and bit stuff these non-negative integers 

NumBits = ceil( 𝑙𝑜𝑔2(2929) ) = 12 

Or, in other words,  

2^11  <  2929  <  2^12 

So we need 12 bit per number to encode all numbers of this block lossless. There are 12 valid 

numbers, resulting in 12 x 12 = 144 bit total. As 144 / 8 = 18, we need 18 bytes to encode the 

entire data block.  

 

Step 4: Write the combined block header (Lerc block header + bit stuffed array header) 

 
Item 
 

 
Value 

 
Size 

Encoding Type (bits 0-1): 
Bits 6-7 encode the next type 

1 1 

Offset 1222.2943 4 

Number of bits per pixel (bits 0-4): 
Bits 6-7 encode the next type 

12 1 

Number of valid pixel 12 1 

 

So we need 7 bytes for the block header. The total number of bytes needed for this block is 18 

+ 7 = 25. Obviously the header takes too much space compared to the raw data. That’s why the 

smallest block size we work with is usually 8 x 8 pixels, not 4 x 4.  

 



Example for encoding one block using MaxZError = 1.0 
 

Let’s encode the very same pixel block again, but this time using a larger error threshold of 1.0. 

Step 1, calculate the statistics, is the same as before.  

 

Step 2: Determine how to encode this block. Assume MaxZError = 1.0. 

(Max – Min) / (2 * MaxZError) = 29.29 

This is less than 2^30. So we can quantize the pixel values from the above block, using  

n(i) = (unsigned int)((x(i) – Min) / (2 * MaxZError) + 0.5) 

resulting in 

 

6 10 17 23 

29 13 25 29 

void 0 9 void 

21 14 void void 

 

Step 3: Determine number of bits needed and bit stuff these non-negative integers 

NumBits = ceil( 𝑙𝑜𝑔2(29) ) = 5 

Or, in other words,  

2^4  <  29  <  2^5 

So we need 5 bit per number to encode all numbers of this block lossless. There are 12 valid 

numbers, resulting in 5 x 12 = 60 bit total. As 60 / 8 = 7.5, we need 8 bytes to encode the entire 

data block.  

 

 

 



Step 4: Write the combined block header (Lerc block header + bit stuffed array header) 

 
Item 
 

 
Value 

 
Size 

Encoding Type (bits 0-1): 
Bits 6-7 encode the next type 

1 1 

Offset 1222.2943 4 

Number of bits per pixel (bits 0-4): 
Bits 6-7 encode the next type 

5 1 

Number of valid pixel 12 1 

 

So we need 7 bytes for the block header. The total number of bytes needed for this block is 8 + 

7 = 15.  
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