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Process management is a problem often dealt with within the kernel. However, a suffi-
ciently complex user-space system must also manage the processes that make up the sys-
tem. In a highly structured system with with a single processat the root of the process
hierarchy, strict system defined forking semantics along with help from the OS can allow
relatively easy process management. However, in a more loosely defined system that allows
arbitrary forking, and in which the parent of a process may not be the process responsible
for managing the child, the OS does not provided sufficient support for process manage-
ment. Namely, the OS will only notify a process its childrensdeaths and process ids are
not unique identifiers of a given process. Therefore, a user-level mechanism is required to
determine the status of a given process. A simple layer of indirection could be applied to
the forking functionality that allows a process managementservice to intervene between
the user application and the system, essentially virtualizing processes and process ids. Our
work is focused on ensuring that a particular service, the Condor master, has exited so that
we can ensure that no Condor services are currently running on a given host. Therefore,
adding another layer of services would be unacceptable because we would need be able to
guarantee that this layer of services has also exited, and soon. We believe that the correct
model for this is a simple program that queries and returns the status of the master process.
We can ensure that the querying program has exited by returning the status of the master
through the program’s exit code.

To correctly query the status of a given process, we need a unique name for a process.
Unfortunately, the OS-provided pids are not sufficient because they may be reused after a
process exits. An obvious, and often used, solution to this problem is to pair process birth-
day with the pid to create a unique identifier for a process. Unfortunately, this technique is
error prone due the precision of the birthday and variability of system time to due network
time protocol (NTP). To better understand and to help alleviate the problems with a pid and
birthday (bpid) identifier, we created a state machine that represents the pid usage process,
and created a model of pid usage based on this state machine. We defined the precision
of the birthdays returned by the OS as the ’range’ of possiblemore precise birthdays for a
process or r(P). Then we defined the bday function which returns true if birthday returned
by the OS for the given pid is within the range of a that process, r(P), and false otherwise.
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Next, we subdivided the time of a query into five possible states a pid could be in (from our
state machine): unborn, alive, zombie, dead, and reused. Wethen created two cases based
on two processes that share the same pid: process 1’s (p1) range overlaps with process 2
(p2), and p1 and p2’s ranges do not overlap. For both cases we determine the return value
of the bday function when the pid is in each of the five possiblestates and when the OS
provides a wide variety of birthdays. From this analysis we determined the states and cases
in which the bday function will provide false positives and false negatives.

The false answers that the bday function returns fall into two broad categories, false
positives due to the overlapping ranges of p1 and p2, and false answers due to birthdays
failing outside of their designated ranges. To prevent the first category of false positives we
need to ensure that r(p1) does not overlap with r(p2). Further, we should provide a buffer
between the ranges to help reduce the false positives causedby the second category. The
second category is more difficult because it is a problem withour assumptions, namely that
we can accurately determine the precision of birthdays returned by the OS. If we cannot
accurately determine the precision of birthdays returned by the OS, we cannot completely
prevent the false answers caused by category two. However, we can attempt to reduce their
occurrences by artificially increasing p1’s range.

We can programmatically prevent overlapping birthday ranges by introducing a mid-
wife program that creates a process and supervises its execution for a limited period of
time. The OS will not reuse a pid until the process which previously had that pid is dead
and has been reaped by the parent process. Therefore, we can prevent range overlap by
using a midwife to fork our processes. The midwife will not reap a process until sufficient
time has passed to ensure that birthday ranges for this pid will not overlap. To calculate
whatenough time is the midwife must fork the child and query the OS for its birthday. The
midwife must assume that the queried value represents the smallest possible value in the
range of available birthdays, and therefore add a full rangesize to the returned birthday.
Then the midwife must provide a buffer between the ranges, and finally ensure that if the
pid were immediately reused after the buffer, the range of the new pid would not overlap
into the buffer. Therefore, the required wait time the midwife must supervise this process
is: queried birthday + size(r(p1)) + buffer size + size(r(p2)). After which, if the process is
dead the midwife can reap it, or if the process is still alive the midwife can exit and allow
the OS to reap it later. It should be noted that this only establishes the range of p1, nothing
more.

Increasing the range of p1 to reduce the problems of categorytwo is more difficult.
We can always err on the side of safety by setting the acceptable range to be larger than
we think is necessary. However, this increases the time thatthe midwife must supervise a
process. Additionally, we can artificially increase the range of p1 by setting the left most
(smallest) value of the range to negative infinity. We can do this because, if the process
existed with the given pid then no process can exist now with the same pid and a smaller
birthday. In other words, reincarnation is not allowed in a computer system. Finally, we
can allow the process status query program (undertaker) to act as a intermittent supervisor
to the monitored process. If the undertaker checks the process and determines that it is still
alive then we can extend the birthdays we accept to include most of the unsupervised run
time of the process as well. To prevent overlapping ranges and provide a buffer, the range
can only be extended to the time the undertaker checked the process minus the buffer range
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and r(p2).
Unfortunately, this model does not include time anomalies caused by changes to the

system clock due to NTP or administration. When possible NTPslews the clock into the
right position by making individual seconds shorter or longer. However occasionally it
must set the clock forward or backward, this is called stepping. When stepping occurs
some OS’s will adjust process birthdays to ensure that a process was not born before the
system booted. For example, if a system booted at 45 and a process was born at 50 and at
time 60 the system time was stepped to 70, the boot time would have to be modified to 55
to prevent a skew in the uptime, and therefore the process would be born before the system
booted.

We, therefore, extended our model to include time anomalies. In this case we were
able to simplify the model considerably because the only times that are recorded outside
of the OS are process birthdays. The range around that birthday is computed rather than
stored. Therefore, we only modeled queries that occur in thealive state and in the reused
state. We created 4 cases: a forward step prior to reuse, a forward step after reuse, a
backward step prior to reuse, and a backward step after reuse. This again creates two
categories of false answers. False negatives occur in forward and backward stepping when
the anomaly and the query occur before reuse. Essentially, the OS returns a birthday in
new time that doesn’t match our stored range. False positives occur in backward stepping
with the anomaly before or after the reuse and the query is after reuse. Essentially, the OS
returns p2’s birthday innew time and p2’s birthday falls into r(p1)’s old time.

Both of the categories can be prevented by shifting the stored birthday for the process
into new time. The real difficulty occurs when trying to determine that an anomaly has
occurred and by what amount has the time changed. We must be able to sample some
relatively constant time that changes only when a anomaly occurs. In Linux, this is the
the boot time, which is adjusted when stepping the clock to ensure that it doesn’t appear
like the system booted in the future. Storing the boot time ofthe system when a process’s
birthday is stored will ensure that we can detect an anomaly between a process’s creation
and the next query of its status. The difference between the stored boot time and the queried
boot time will allows us to determine how much and in which direction to shift the stored
birthday.

Using the techniques in this report we will implement a midwife that provides limited
supervision of the early stages of a process’s execution andan undertaker that can determine
whether a process is dead with reasonable certainty. Additionally, the undertaker will be
able to update the range of a process’s acceptable birthdaysand shift the birthdays to handle
time anomalies.
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