Ficl, FORML, & Object Forth

John Sadler

April 1999

Biographical note:

When not working on late night coding projects, John Sadler is a software development manager at Hewlett-Packard Bioscience Products. He has helped to develop various real-time and informatics systems including products for the life sciences and telecommunications markets and automated manufacturing systems. John holds a BSME from MIT and an MSME from Stanford, with a concentration in control theory. He can be reached by email at john_sadler@alum.mit.edu
The article…

This is a story about Ficl, my contribution to the freeware Forth interpreter menagerie, distilled from a paper I presented at the November ’98 FORML conference. The FORML conference is an annual meeting of Forth enthusiasts where nearly everyone is expected to present a paper. FORML, or FORth Modification Laboratory, is always about experimental developments in the language, and is also a social occasion for people who have been in the community for many years. I had never attended before, and was excited to meet such Forth luminaries as Chuck Moore, Elizabeth Rather, John Rible, Skip Carter, Brad Rodriguez, Wil Baden, Mitch Bradley, and Tom Zimmer.

This year’s conference included several papers on Object Oriented extensions, including my own describing Ficl’s object model. Several of us hit on similar implementation ideas – particularly the notion that an object in Forth could be represented as a pair of pointers: one that refers to the class, and another that refers to the payload – the object’s state memory.

While there was some synergy of thought at FORML surrounding OO Forth, it seemed clear to me that the Forth community is unlikely to converge on a common way of doing OO programming. First, it’s just too easy to add object extensions to Forth. Everyone seemed to need about 200 lines of source to do the job. That means that it’s simple enough that you can roll your own special flavors of object extension. Brad Rodriguez’s paper [1] lists over 30 flavors of object Forth, each with its own special slant. The second reason that I’m not holding my breath for an OO extension to ANSI Forth is that many of the language’s founders have no use for objects – some consider code re-use to be a bad idea, and others see no need for OO in general.

Still, there are those of us who feel that Forth is most likely to thrive as a niche language. One of its strengths is that it combines efficiency, compactness, and the rapid development cycle one would expect from an interpreted language. Adding the ability to provide objects for small systems might tempt some new adopters.

Ficl started about two years ago with the realization that in most past projects, I haven’t used Forth as the primary delivery language, but rather as a vehicle for scripting, hardware turn-on, and rapid prototyping. Most of the projects I’ve been involved in lately are delivered mainly in C, C++, or a mix of the two. Often, C and C++ programmers have enough trouble keeping up with the latest developments in those languages. They’re not too keen to invest effort in learning another (off-mainstream) language unless the payback is obvious, it’s easy to get the thing up and running, and there is a low risk migration path.

Large systems can use TCL or Python as scripting languages, but both require quite a bit of memory and a full-sized operating system. Special purpose and small systems would benefit from an interpreter that inserts easily into code primarily written in C, that can act either as a primary development language or for prototyping / scripting / hardware turn-on, and that can call through to functions written in C or assembly. Now there is one. It’s called Ficl, and it’s available for download at http://www.taygeta.com/ficl.html.

>>> About Ficl

Ficl is an ANSI Forth written in C, designed specifically to be embedded in programs written in C. Ficl combines a simple way to import C functions with a simple object oriented syntax that is capable of wrapping data structures compiled in other languages. In so doing, Ficl can act as an object oriented front-end for small systems written in either Forth or C.

Ficl is presently designed into several projects both public and private. These include robot control, the FreeBSD boot loader, a Palm Pilot debugger, and various firmware projects at companies large and small.
Why write another freeware Forth? There are large numbers of them available on the FIG web site, and more in Europe and elsewhere. Several are written in C, and some sport extensive Windows programming capabilities, object oriented extensions, and other syntactical goodies that help with larger coding projects.

I suppose that there are several reasons for writing Ficl. First, I’ve had some difficulty getting C programmers to embrace Forth even as an adjunct to their regular coding in C or C++. The last Forth interpreter I used in a product had a kernel written in 68K assembly language. I understood it quite well, but everyone else thought it was ugly to maintain. This is a reasonable complaint in the sense that conservative engineers want to have a good mental model of the tools they use.

To address this problem, I wrote Ficl in ANSI C, and designed it to minimize the porting requirements to systems that have C runtime environments. You can port Ficl to any 32 bit microprocessor by taking a few minutes to inspect the main header file, possibly redefining some simple typedefs, and by filling in three function stubs. Two of these map very closely to the Standard C functions malloc and free. The third gets text out of the interpreter – this solves a common problem in mapping the C runtime to small systems: no Standard I/O or file system.

While lots of programmers know C, this language is not optimally suited to embedded system prototyping and rapid development because of the time and typing overhead it takes to create even a simple program, and because your compiler generally resides on a system different than the target. There is clearly an opportunity for a programming environment like Forth even in organizations where C or C++ are the intended production language. Ficl attempts to address this niche by being very straightforward to integrate into C programs while requiring minimal system resources. Ficl allows C functions to be exported to the interpreter through a programming interface that does not require editing the Ficl sources. It also provides object oriented programming extensions that work well with C programs. This last feature might provide a low-overhead path to OOP for embedded systems developers who find the barriers to entry of C++ too daunting.

One reason for using a standard language rather than inventing a new one is that it should be possible to find books that explain the language to new users, rather than having to write one. Further, the time invested in learning a standard language seems more likely to be repaid by future applications. That’s why Ficl conforms to the 1994 ANSI standard for Forth.

Taken together, here’s the list of requirements I wrote when starting to design Ficl [2]:

· Scripting, prototyping, and extension language for programs written in C or C++

· Target 32 bit microprocessors with a C runtime environment

· Minimize porting overhead given the above constraints

· Conform to the DPANS, providing the CORE word set plus SEARCH and LOCAL optional word sets

· Provide object oriented programming extensions

· Make the code as transparent as possible

· Provide a means to export C functions to the interpreter

My web searches turned up nothing that met all of these goals, so here it is. One additional reason for addressing the scripting/prototyping niche is my hope that Ficl will be a “stealth” Forth – that people might adopt Ficl for its ease of integration, and be drawn to Forth once they realize that it’s much more than a scripting language. We’ll see.

>>> Ficl’s C Interface

Many other Forths written in C have large switch statements at the core of their inner interpreters. In this model, primitives are assigned small integer tokens. To add a Forth wrapper to application specific code written in C, you have to add a new case to the switch for each function to be exported. This forces external code interfaces to be concentrated in the token interpreter rather than co-located with functionally related code. This presents maintenance problems in most cases.

We can remedy that situation by adding a Forth primitive that calls a C function indirectly through a stored address, similar to the way DOES> vectors to code defined in another word. This might permit an interface from Forth to C: discover the address of some function, execute Forth code to create a word and cause the new word to call the C function when executed. Unfortunately, it’s not automatic to know the address of a C function from Forth.

The Forth interpreter can fix this by exposing an interface function that host programs call to bind application-domain functions to words in Forth’s symbol table, the dictionary. If we require that all C functions exported to our Forth have the same signature (number and type of parameters, and return type), then the builder function would need only the address of the target function, and the name to bind in the dictionary. The builder would append a definition to the dictionary that calls the target C function, supplying whatever parameters the convention specifies. Here’s a sample prototype for such a builder:
void ficlBuild(char *name, void *function);

An alternative is to allow the interface to specify the number of cells to pop off the parameter stack and push onto the C call stack before invoking the C interface function. This makes it possible to wrap a broader range of C functions in Forth words, as long as all their parameters are properly aligned. It requires the builder to provide a means to specify the number and width of parameters to push on the C calling stack, and the size of the return value, if any. The simplest way to do this is to require that all interface functions have parameters of one specified width. The builder function might then look like this:

void ficlBuild(char *name, void *function, int nParams, int nReturn);

Otherwise, there needs to be a more complex protocol for specifying each parameter’s width. The variable signature designs require information about the function that the C compiler neither supplies nor checks for consistency. On the other hand, the constant signature design requires a special wrapper function to be written for each exported word. The wrapper function’s job is to marshal parameters from Forth to C explicitly. An advantage of this approach is that the compiler can check that the target function call has the correct number and widths of parameters. Ficl uses this wrapper function technique to import C functions because it’s robust and well precedented in other scripting languages.

Now that there is a way to import functions written in C to our Forth, why not get rid of the switch statement and write all of the primitives this way? Ficl does this, reducing the inner interpreter to a small loop. Now application-specific words have exactly the same execution mechanics as any other Forth primitive.

The wrapper function technique generally requires that interface functions be written explicitly for Ficl. This is not hard. Ficl’s interface builder really is called ficlBuild(), and it expects three parameters: the name of the word to be created, a pointer to a function to execute, and a bit-field that specifies IMMEDIATE and compile-only attributes. When the wrapper function executes, it gets as its one parameter a pointer to the Ficl virtual machine that’s executing it, and it returns nothing. The wrapper function can use the virtual machine pointer to manipulate the stacks and the input buffer.

Ficl provides public functions to push and pop stacks, perform run-time stack depth checking, and manipulate the dictionary. A typical wrapper function pops some parameters off Ficl’s stack, passes them to a C function, and pushes the result onto Ficl’s stack again.

Host applications get text to Ficl by calling ficlExec. This function causes a virtual machine to execute a chunk of text. FiclExec is reentrant, so wrapper functions can use it too. This is another distinction between Ficl and other Forths written in C: Ficl’s outer interpreter does not expect to get more input text from any specific place – it just returns control to the host application when it gets hungry.

Ficl Object Goals

1. Back on the Web, I started looking for established practice in Object extensions for Forth. It appears that most Forth object extensions [1] model their internals after C++ in the sense that each class contains a pointer table (a vtable in C++ jargon) that maps small integer messages to execution tokens that are the corresponding methods of the class. In order to create a class, you must first

create a message map that has a slot for each method of the class. Each class contains a pointer to the message map, among other things. This appears to impose a couple of unpleasant restrictions: derived classes use the same message maps as their parents, so a derived class cannot add methods, it can only override methods defined in its parent class. In addition, the words that represent messages to the class are in a public wordlist. It’s possible for two unrelated classes to define the same message with different values.

I wanted Ficl to have a simple and flexible object model that emphasized what I saw as the two original motives for developing OO programming in the first place: safety and reuse. Safety in this case means to make sure that data and the operations that are defined on the data are always matched. Inheritance provides the reuse mechanism.

2. Classic definitions of object oriented programming [4,5] list the three essential attributes of an OO language as encapsulation, polymorphism, and inheritance. We mentioned encapsulation and inheritance in the previous paragraph. Polymorphism, the mapping of a particular message to different methods depending on the class of the receiver, implies late binding. In order to be safe, I decided to make late binding Ficl's default behavior, and to provide early binding upon request for efficiency. Late binding guarantees that the appropriate method will be invoked for a given message, while early binding can cause misunderstandings.

3. In order to realize the design goal of full interoperation between Ficl and its host program, I added the requirement that Ficl’s object model be somehow capable of acting as an adapter, to model data structures written in C. Here’s the list of Ficl Object design goals [2]:

· Ficl objects are normally late bound for safety (late binding guarantees that the appropriate method will always be invoked for a particular object). Early binding is also available, provided you know the object's class at compile-time.

· Support single inheritance, aggregation, and arrays of objects.

· Classes have independent name spaces for their methods: methods are only visible in the context of a class or object.

· Methods can be overridden or added in subclasses

· No fixed limit on the number of methods of a class or subclass

· Ficl OOP syntax is regular and unified over classes and objects. In Ficl, classes are objects. Class methods include the ability to subclass and instantiate.

· Adapt legacy data structures with object wrappers. You can model a structure in a Ficl class, and create an instance that refers to an address in memory that holds an instance of the structure. The ref object can manipulate the structure directly. This lets you wrap data structures written and instantiated in C.

Be thread-safe so that concurrent virtual machines can use objects

I wrote Ficl and its object extensions to provide robust and rich OO programming to systems where C++ is not clearly warranted. If you’re interested in getting more information about Ficl, please see references [2,3] below on the web for downloads, tutorials, and more details about the design.
4. References

5. Forth Objects – Bradford Rodriguez - xxxx

6. Ficl Release Notes – John Sadler – http://www.taygeta.com/ficl.html
7. Ficl – John Sadler – Dr. Dobb’s Journal, January 1999

8. Object Oriented Software Systems – David Robson – Byte, August 1981

9. Smalltalk-80: the Language – Adele Goldberg, Dave Robson – Addison Wesley, 1989

10. Resources for further reading:
1. Ficl – Object Forth Wraps C Structures – John Sadler – 20th FORML Conference. November 1998

2. Yet another Forth objects package – M. Anton Ertl – http://www.complang.tuwien.ac.at/forth/objects/objects.html
3. Objects for Small Systems – John Hayes – Embedded Systems Programming, March 1992

4. Portable Inheritance and Polymorphism in C – Miro Samek – Embedded Systems Programming, December 1997

5. SWIG and Automated C/C++ Scripting Extensions – David Beazley – Dr. Dobb’s Journal, February, 1998

