
Manual for the Rig Controller

This program is essentially a Hamlib rigctld daemon with a graphical user

interface, which in addition has some additional "buttons" to control the rig

(setting RF power level, CW keying speed, mode etc.). I made this program for two

purposes:

a) having a central piece of software that actually communicates with the rig, and

acting as a server for digimode and logging programs such that they can

simultaneously "talk" to the rig via the RigController program. This is especially

helpful if using a microHam device under MacOS, because many digimode and

logging programs support Hamlib but not microHam devices.

b) having a software to adjust output power etc. because one of my rig has a

defective knob to do so manually (Kenwood TS570 owners know what I am talking

about).

c) Because it was easy to integrate, the RigController also can send CW (using

either the built-in CW feature of the rig or a WinKeyer) and voice samples (because

I do not have a voice keyer), it also can generate a one-tone and a two-tone audio

signal for TX testing.

d) Because I found no other way to connect my logging application (MacLoggerDX)

to the radio, this software also generates, if told to do so, openURL events that tell

MacLoggerDX about the actual frequency and mode.

If the Rig application is started for the first time, it opens its only window that

looks like this (on MacOS computers).

On non-Apple computers the field "Tell MacLoggerDX" does not appear. Note that

when starting the rig controller later, the entries in the menus Rig model, Rig

port, …, SoundCard may be different, since they are then read in from

preferences files stored in the $HOME/.rigcontrol folder. For testing purposes,

you can click "Open Rig", this works since the hamlib "Dummy" rig needs no port.

If the connection is established, the "Open Rig" bar get high-lighted (green), and

soon thereafter the rig settings are shown by high-lighting (in pink) the entries in

the Mode and Power column (default mode of the "Dummy" rig: FM, default output

power: 5 W). In the "CW wpm" column, the default CW speed (20 wpm) should be

highlighted. Moreover, the "Rig Frequency" field should soon be filled with the

Rig's dial frequency, which is upon startup 145 MHz for the "Dummy" rig.

Opening a connection to the rig

The first thing you have to do is to open the connection to the rig. Here you have

to choose the right settings as described below and click the "Open Rig" button (a

successful connection means that the "Open Rig" button becomes permanently

high-lighted in green).

The following choices can (have to) be made:

Rig Model. Choose the model of your rig (if it is supported by Hamlib).

Rig Port. Choose the serial port used for connection to the rig. The serial ports

found in the system when starting the program are already filled, as well as

":19090" which is the default port to connect to some SDR programs offering CAT

over TCP, and "uh-rig" which is the correct port if Hamlib auto-detects a microHam

interface such as the DigiKeyer or the MicroKeyer. You can also type in any other

TCP port or serial device (e.g. "/dev/ttyS1", or "192.168.1.100:19090"). Note that if

you save the preferences, this choice will be the default upon next startup.

PTT Port. Choose a serial port for using PTT switching via DTR. Besides the serial

ports found in the system, the values CAT-Data and CAT-Mic are pre-filled in the

list. These are used if CAT commands are used to switch PTT. If the rig supports

this, CAT-Mic is used to switch PTT if using the microphone jack for audio input,

while CAT-Data is used if a jack on the rear or the rig is used for audio input.

Furthermore, "uh-ptt" is pre-set which is used for hamlib talking to microHam

devices (see above).

Baud 8N1. Choose the baud rate for the CAT connection to the rig (this applies both

to a serial port and a microHam interface). Note that we always use 8 data bits, no

parity, and hardware handshake (although it would be easy to extend this). This

field is not used if a TCP connection to the rig is used.

WinKey Dev. Choose the serial port connecting a WinKey (K1EL) device, or " uh-

wkey" if the Winkeyer inside a microham interface is to be used, or CAT if CW is

done via hamlib commands (if the rig supports this!). Note that if CAT is used,

then the default CW speed is 20 wpm, while if a WinKey device is used, the default

speed is given by the position of the speed pot.

SoundCard. This is only needed for the buttons in the "Voice" column, and for the

buttons "900 Hz", "1700 Hz", and "2 Tone". These buttons send "sound" to the rig

(either pre-recorded wav files for the voice keyer, or some test tones), and a sound

card connected to the microphone input of the rig must be selected here. Modern

rigs have such sound cards built into the rig. The Volume slider can be used to adjust

the AF level.

Changing the default settings

There are several settings (beside the rig connection parameters) which should be

adjusted before actually using the rig controller. This first one is the own call-

sign in the field "MyCall": just click in the text field, type in your call sign and hit

"enter". The call-sign will then be converted to upper case. This call sign needs to

be set correctly for the fixed CW texts.

What comes next is are the button labels in the "CW TXT" column, as well as the

CW texts to be transmitted when hitting one of the buttons. The default setting

for the buttons is ("#" expands to your call sign in the MyCall text field)

Button

label

CW text

call #

cq cq cq cq de # # cq cq de # + k

test test de # # test

cfm cfm ur 5nn

tu tu 73

You can change both the button labels and the CW texts by hitting the "Set CW

texts" button. The following window pop up, and you can edit both the labels and

the CW texts. If you are finished editing, click "Apply".

This program also contains a "voice keyer", that is, digital voice (stored in WAV

files) can be sent to the rig through a sound card (the sound card may well be

inside the rig). Up to five different samples can be chosen by hitting one of the

buttons in the "Voice" column. These files can be selected by hitting the "Set voice

files" button. The following window pops up:

In the text fields, you can edit the button label, and in the right part of the

window, clicking one of the "Choose" buttons opens a file dialog. The wav files

need to have a sample rate of 48000 Hz. Hitting "Apply" stores the settings. Note

that only the names of the wav files are stored, not the files themselves. So if you

move the files after selecting them, they will not be loaded automatically when

the rig controller is started the next time.

The settings (Rig settings, CW texts, voice files) can be saved by clicking the

"Save settings" button. In addition, all settings are saved each time a connection

to a rig has been successfully established.

Rig controller functions: the menus

The TUNE column

Button Function

CW 5 Temporarily set the rig to FM mode and 5 Watts, and activate PTT.

This should emit a 5 watts carrier that can be used for tuning.

CW 25 Temporarily set the rig to FM mode and 25 Watts, and activate

PTT. This should emit a 25 watts carrier that can be used for

tuning.

900 Hz Activate PTT and send a 900 Hz sine tone to the selected sound

card.

1700 Hz Activate PTT and send a 1700 Hz sine tone to the selected sound

card.

2 Tone Activate PTT and send a two-tone (900 and 1700 Hz) audio signal to

the selected sound card.

Note: while active, the buttons are high-lighted (green). Hitting the button a

second time removes PTT and stops the action. When leaving the "CW 5" and "CW

25" modes, the original mode and power is restored.

The VOICE column

Hitting one of the buttons sends the audio stored in the corresponding wav file to

the selected sound card.

The MODE column

Hitting one of the buttons changes the mode of the rig. "USB DATA" is sometimes

called "PKT USB". On rigs that support it, this mode is primarily used for digital

operation.

The CW TXT column

Hitting one of the buttons sends the corresponding CW text. CW text sent is

documented in the "Snt" text field (top-most field of the main window).

The CW wpm column

Hitting one of the buttons sets the CW speed (in wpm). If using a WinKey (K1EL)

device, the topmost button has the label "Pot" and means that the speed is taken

from the speed pot of the WinKey device. For CAT CW, the topmost button choose

12 wpm.

The Power column

Hitting one of the buttons sets the RF output power of the rig.

Typing in free CW text

In the text field labeled "Inp", free text can be entered that will be sent as CW.

The hamlib API does not allow to send single characters (only entire words). So

you can type and also correct within a word, but as soon a blank space is entered

or you hit the enter key, the word is sent.

Connecting the rig from WSJT-X or Fldigi

If the rig controller is connected to a rig via a serial line, other programs such as

digimode programs can no longer use this serial line. To circumvent this problem,

the digimode program (WSJT-X or Fldigi, for example) need to connect to the Rig

controller via TCP, and then the requests are forwarded to the rig.

This can be done if the digimode program supports the Hamlib API. WSJT-X does

so by default, and in Fldigi you have to check "Use Hamlib" in the "Hamlib" tab.

As rig model, simply choose "Hamlib Net rigctl". The default port is :4532 and

usually need not be specified. This way, you can have WSJT-X and the rig

controller both running on your computer and talking to the rig.

Support for MacLoggerDX (MacOS only)

This is only interesting for those using this logbook program on the Macintosh. If

the rig controler controls the rig via a serial line, this line is "occupied" and

MacLoggerDX (the logbook program that I use on my Mac) cannot communicate

directly with the rig. To inform MacLoggerDX about the currently used frequency

and mode, activate this mode by hitting "Tell MacLoggerDX" if it is not high-

lighted in green.

The rig controller periodically obtains the current frequency from the rig, and

sends it to MacLoggerDX if it has changed by more than 3 kHz from the value sent

last. The mode that is sent to MacLoggerDX must be entered manuall in the

"Mode" text field, this way you can enter the correct mode (FT8, PSK, RTTY) if you

work digital, since the rig mode is most likely USB or USB DATA in either case.

Note on compiling the Rig controller

Libraries needed for the rig controller include "Portaudio19" (for sending sound to

the rig) and "fltk-1.3" (the GUI). "hamlib" is also needed. The standard (internet)

archives still mostly contain Version 3 of hamlib, but this code already uses the

version 4 API, so we here also give instructions to get and compile hamlib.

First, some packages generally used for compiling big software packages need be

installed. This is done with the commands (probably you do not need cmake, but it

is a good idea to have it)

sudo apt-get install make
sudo apt-get install gcc
sudo apt-get install git
sudo apt-get install pkg-config
sudo apt-get install cmake
sudo apt-get install autoconf
sudo apt-get install libtool

Compiling and installing hamlib is then done with the commands

cd $HOME
git clone https://github.com/hamlib/hamlib
cd hamlib
autoreconf -i
./configure
make -j 4
sudo make install
sudo ldconfig

The ./configure command produces lots of output, in case of a successful

configuration the options found are given and this should look like this:

--

 Hamlib Version 4.0~git configuration:

 Prefix /usr/local
 Preprocessor gcc -E
 C Compiler gcc -g -O2
 C++ Compiler g++ -g -O2

 Package features:
 With C++ binding yes
 With Perl binding no
 With Python binding no
 With TCL binding no
 With Lua binding no
 With rigmem XML support no
 With Readline support yes

 Enable HTML rig feature matrix no
 Enable WinRadio yes
 Enable USRP no
 Enable USB backends yes
 Enable shared libs yes
 Enable static libs yes

It is possible that it looks a little bit different, for example if the libraries needed

for the USB backends are not found, or if the "Readline" library is not found.

For the rig controller, you need the FLTK library (the graphical user interface

library) and some PortAudio components (this is for handling sound). This you

install via

sudo apt-get install libfltk1.3-dev
sudo apt-get install libportaudio-dev
sudo apt-get install portaudio19-dev

Finally, you can download the rig controller source code and compile it with

cd $HOME
git clone https://github.com/dl1ycf/RigCtldGUI
cd RigCtldGUI
make

